

Study on Adaptive Scheduling Method based on

Anytime Algorithm for Real-Time Image Processing

Wyne Wyne Kywe

Study on Adaptive Scheduling Method based on

Anytime Algorithm for Real-Time Image Processing

by

Wyne Wyne Kywe

M.I.Sc (University of Computer Studies, Yangon, Myanmar) 1998

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

INFORMATION SCIENCE AND TECHNOLOGY

in the

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

DEPARTMENT

of the

AICHI PREFECTURAL UNIVERSITY

 at AICHI, JAPAN

Committee in charge:

Professor Kazuhito Murakami, Chair

Professor Takashi Okuda

Professor He Lifeng

2013

Study on Adaptive Scheduling Method based on

Anytime Algorithm for Real-Time Image Processing

Copyright © 2013

by

WYNE WYNE KYWE

iii

Contents

Table of Contents…………………………………………………………………… iii

List of Figures……………………………………………………………………….viii

List of Tables………………………………………………………………………….xi

Preface………………………………………………………………………………...xii

Acknowledgement………………………………………………………………….xiv

CHAPTER 1 ··· 1

INTRODUCTION ·· 1

1.1 Background, Problems, and Related Works ·· 1

1.2 Real-Time Image Processing (RTIP) ··· 3

1.3 Scheduling with Time Constraint ·· 4

1.4 Organization of Thesis··· 6

CHAPTER 2 ··· 9

ANYTIME ALGORITHM AND IMPRECISE COMPUTATION ···························· 9

2.1 Introduction ··· 9

2.2 Anytime Algorithm ·· 9

2.2.1 Definition ··· 9

2.2.2 General Concepts ·· 10

2.3 Properties of Anytime Algorithm ·· 11

2.4 Type of Anytime Algorithm ··· 12

2.4.1 Contract ·· 12

2.4.2 Interruptible··· 13

2.4.3 Differences Between Interruptible and Contract Anytime Algorithms ············ 13

CONTENTS

iv

2.5 Performance Profile ·· 13

2.5.1 Definition ··· 13

2.5.2 Representation of Performance Profile ·· 14

2.5.3 Type of Performance Profile ·· 15

2.5.4 Finding the Performance Profile of an Algorithm ·· 16

2.6 Reduction Theorem ··· 18

2.7 Compilation Process ·· 18

2.8 Runtime Monitoring ·· 19

2.9 Imprecise Computation ·· 19

2.9.1 What Is Imprecise Computation ·· 19

2.9.2 Imprecise Computation Model ··· 19

2.9.3 Overhead Time ··· 20

2.10 Summary ·· 21

CHAPTER 3 ··· 23

SCHEDULING WITH RESOURCE CONSTRAINT ·· 23

3.1 Introduction ··· 23

3.2 Scheduling Mechanism ··· 24

3.2.1 Scheduling with Time Constraint ·· 24

3.2.2 Characteristic of Scheduling ··· 25

3.3 Proposed Scheduling Mechanism ·· 26

3.3.1 Basic Workload Model ··· 26

3.3.2 Scheduling Algorithm ·· 30

3.3.3 Evaluation of the Overall Processing Result of Dependent Tasks ···················· 30

3.3.4 Determination of Quality of Overall Processing Result ································· 34

3.3.5 Analysis of Quality of the Overall Processing Result ····································· 35

3.3.6 Discussion ··· 39

3.4 Summary ··· 40

CONTENTS

v

CHAPTER 4 ··· 42

ANYTIME ALGORITHMIC IMAGE PROCESSING ·· 42

4.1 Introduction ·· 42

4.2 Anytime Algorithmic Image Processing ··· 44

4.2.1 AA Spatial Filtering ··· 46

4.2.2 AA Gradient method ·· 53

4.2.3 AA Morphological Processing ··· 55

4.2.4 AA Conditional Processing ·· 58

4.3 Experimental Results ·· 59

4.3.1 AA Noise Reduction ··· 59

4.3.2 AA Edge Detection ··· 63

4.3.3 AA Sharpening ·· 66

4.3.4 AA thinning ·· 67

4.3.5 AA Boundary Detection ·· 69

4.4 Summary ·· 72

CHAPTER 5 ··· 74

ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING ···················· 74

5.1 Introduction ·· 74

5.2 How to Schedule the Tasks by Imprecise Computation ····································· 75

5.2.1 Algorithms for Scheduling under Time Constraint ······································· 78

5.2.2 Experiments and Results ··· 81

5.3 Effectiveness of the Proposed Method ·· 96

5.4 Summary ·· 96

CHAPTER 6 ··· 98

OVERALL PROCESSING RESULT IN AAIP ·· 98

CONTENTS

vi

6.1 Introduction ·· 98

6.2 Formulation of Quality Function in AAIP ·· 98

6.3 Overall Performance ··· 100

6.3.1 Realization of Overall Performance ·· 100

6.3.2 Evaluation of Overall Quality ·· 101

6.4 Quality of Image Processing ·· 102

6.4.1 Realization of Overall Quality in Scheduling ·· 104

6.4.2 Performance Curves ·· 106

6.5 Summary ·· 108

CHAPTER 7 ··· 109

CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE ··················· 109

7.1 Introduction ··· 109

7.2 Basic Properties ·· 110

7.2.1 Thermal Property with Contact Lenses ·· 110

7.2.2 Thermal Property without Contact Lenses ·· 110

7.3 Differences of Transition of Temperature in Wearing Soft and Hard Lenses ··········111

7.4 Algorithms for Contact Lenses Extraction ·· 112

7.4.1 Hard Lens Extraction Algorithm ··· 112

7.4.2 Soft Lens Extraction Algorithm ··· 113

7.5 Experimental Results and Discussions··· 114

7.5.1 Machine Environment ··· 114

7.5.2 Experiment ·· 115

7.5.3 Results and Discussions ··· 115

7.6 Summary ··· 116

CHAPTER 8 ··· 118

CONTENTS

vii

CONCLUSION ··· 118

8.1 Introduction ··· 118

8.2 Contribution ··· 119

8.3 Discussion ··· 119

8.4 Future Work ··· 120

Bibliography 121

List of Publications 124

viii

List of Figures

1.1 Combination of tasks in the restricted time……………………………….5

1.2 The basic framework………………………………………………….…….6

2.1 Anytime algorithmic form of a task………………………………….….…12

2.2 Graphical representation of performance profiles………………….….…14

2.3 Graphical representation of a CPP………………………………….……...17

2.4 Performance profiles of interruptible and contract algorithms….……...18

2.5 Ways in the conventional method……………………………………….…20

2.6 Ways in the proposed method……………………………………………...20

2.7 Process flow of n sub-tasks of a task……………………………….……... 21

3.1 Imprecise computation model in the conventional method…….……..…27

3.2 Imprecise computation model in the proposed method…………….…...27

3.3 Basic workload model of the proposed method…………………….…….29

3.4 Process flow of N tasks……………………………………………….…......29

3.5 Performance curves of the quality of result of the task……………....34

3.6 Scheduling result for 4 tasks……………………………………………..…37

3.7 Overall performance of 4 tasks…………………………………………..…38

4.1 Anytime algorithmic form of an image processing task…………………45

4.2 3x3 filter mask…………………………………….…………………….…...48

4.3 Divided sub-masks of 3x3 filter mask…………………………………….48

4.4 (a) Gaussian 3x3 mask (b) Divided sub-masks of Gaussian……………..50

4.5 (a) Mean 3x3 filter (b) Divided sub-masks of Mean filter………………..51

4.6 (a) Basic hi-pass spatial 3x3 mask

 (b) Divided sub-masks of basic hi-pass spatial filter……..….……….52

4.7 (a) Prewitt 3x3 mask (b) Divided sub-masks of Prewitt………………....54

4.8 (a) Sobel 3x3 mask (b) Divided sub-masks of Sobel……………………...55

4.9 (a) 3x3 structuring element (b) its sub-structuring elements………… ...56

4.10 Divided sub-conditions……………………………………. ……………….58

4.11 Divided anytime simple averaging step…………………………………..59

4.12 Test images for anytime noise reduction……………………………….…60

4.13 (a) Standard Lena image with size 1024x1024

(b) ~ (i) smoothing result images by divided 8 sub-masks using 3x3

Gaussian filter………….……………………………………………………...60

4.14 Performance curve of noise reduction by Gaussian filter…………….…61

4.15 Input noisy image…………………………………………………………...62

4.16 Noise reduced images applying step 1 to 8 by using Mean filter…….…62

4.17 Performance curves for AA noise reduction……………………………...62

4.18 Anytime gradient method by Prewitt filter…………………………….…64

LIST OF FIGURES

ix

4.19 (a) Original image with size 2048x2048 (b) to (g) edge detection results

by divided sub-masks of Sobel filter………………………………………64

4.20 Performance curve of anytime algorithmic edge detection by Sobel

filter……………………………………………………………….…….……65

4.21 (a) input gray image (b) ~ (g) Edge detected images by filter type 1 to 6

using Prewitt operator………….………………………...………………...65

4.22 (a) Midway result at step 3 (b) Performance curve for edge detection..66

4.23 (a) Original image with size 1024x1024 (b) ~ (i) sharpening result

images by divided sub-masks of basic hi-pass filter…….………66

4.24 Performance curve of sharpening by basic hi-pass filter……………….67

4.25 Input binary image…………………………………..…………………..68

4.26 Thinned image by Hilditch’s method…………………………………….68

4.27 Performance curve for thinning by Hilditch’s method………………....69

4.28 (a) Input image (b) ~ (i) are eroded images applied by sub-structuring

elements B1 to B8 and (b)’ ~ (i)’ are the boundary extracted results of

corresponding images in (b) ~ (i) ………….....…………….……………....71

4.29 Some of tested images……………………………………….……………….71

5.1 Conceptual scheduling model…………………………………………….77

5.2 Schedule by the conventional method……………………………………77

5.3 Schedule by the proposed method………………………………………..77

5.4 Probability of overall result by processing time………………………....82

5.5 Different sub-optimal schedules by tact time……………………………83

5.6 Probability of sub-optimal overall result by processing time…………..83

5.7 Schedules by distributed time……………………………………………..85

5.8 The probability of success by graph………………………………………87

5.9 Different sub-optimal schedules by distributed time……………………89

5.10 The performance curve of sub-optimal overall outcomes………………92

5.11 (a) Original input image (b) ~ (e) Output images by dependent case…94

5.12 Graphical representation of scheduling of 4 tasks……………………..94

5.13 Total performance of scheduling of 4 tasks……………………………..95

6.1 The average performance curve of noise reduction by 8 steps………..102

6.2 The average performance curve of edge detection by 6 steps………...102

6.3 The average performance curve of thinning by 5 steps………………..103

6.4 The average performance curve of boundary detection by 5 steps…...103

6.5 The performance curve for the overall processing result of 4 tasks…..104

6.6 Scheduling result for 4 tasks……………………………………………...105

6.7 Overall performance of 4 tasks…………………………………………...105

6.8 Performance curve of eroded points………………………………….….107

6.9 Performance curve of boundary extracted points……………………....107

7.1 Examples thermo-vision images for non lens and contact lens……….111

LIST OF FIGURES

x

7.2 Histograms of temperature around eye region…………………………111

7.3 Typical example of the transitions of soft, hard and non lenses………111

7.4 Sample output images in processing steps for hard lenses……………113

7.5 An example extracted result for soft lenses……………………………..114

7.6 Typical examples of the transition of the temperature in different

seasonal cases…………………..…………..………………………………116

xi

List of Tables

2.1 Tabular representation of performance profile for 4 tasks……………15

3.1 Characteristic of scheduling problems…………………………………..25

3.2 Scheduling result for independent case…………………………………38

3.3 Comparison of scheduling result for independent case……………….39

5.1 Example data by the conventional scheduling method………………..77

5.2 Example data by the proposed scheduling method……………………77

5.3 Scheduling result of sub-task number by related processing time

and sub-optimal overall result……………………………………………82

5.4 Simulation experiment of the proposed imprecise task system……….84

5.5 An imprecise task system………………………………………………….84

5.6 A weighted imprecise task system………………………………………..84

5.7 Expected experimental result…………………………………………….85

5.8 The probability of success at each trial run and their execution time...87

5.9 The different sub-optimal schedules by the required sub-task

number of each task with their related execution time…………………88

5.10 Distributed time of each sub-task and their related probability and

the probability of the overall outcomes………………..………………….90

5.11 Tabular representation of scheduling of 4 tasks for dependent case…95

6.1 Scheduling result for independent case…………………………………106

7.1 Experimental data…………………………………………………………115

7.2 Experimental result………………………………………………………..115

xii

Preface

In the real time environment, the digital contents such as image, video, and

sound are being involved due to the technical improvement of information

technology. In the low performance machine environment, it would be difficult

to extract the useful information of the combination of tasks when the time is

restricted.

In order to perform the tasks partially and optimize the overall

processing result of combination of tasks in the restricted time, the objective of

this dissertation concentrated on reconstruction of the digital image processing

method, and construction of image processing library based on anytime

algorithm from the software and algorithmic point of view.

Focusing on the above problems, this work is developed from the

viewpoints of algorithmic and software engineering for the predictable

performance of processing result from the available processing time rather than

just fast processing by anytime algorithmic approach, according to its definition

and features. Because anytime algorithm offers a trade-off between

computation time and the quality of the processing result returned.

From the viewpoint of the quality of image processing and the

processing time, this work proposes the adaptive static scheduling scheme

based on anytime algorithm and imprecise computation for the overall image

processing result under a condition that the processing time is restricted.

In order to optimize the overall image processing result by the

proposed adaptive scheduling scheme, the detailed explanations of

construction of adaptive scheduling scheme is described. Then, the proposed

scheduling method is applied to the image processing task as an example. Thus,

how to modify CIP (Conventional Image Processing) method such as filter type,

gradient type, morphological type, and condition type to AAIP (Anytime

Algorithmic Image Processing) method is explained. After that, how to realize

the quality of each image processing task and how to optimize the overall

processing result of image processing tasks are explained by using typical

image processing tasks like noise reduction, edge detection, sharpening,

thinning, and boundary detection.

The quality function of image processing result is expressed by using

CDF (cumulative probability distribution function) in probability theory for

each AAIP methods. The experimental results of the AAIP method expressed

that the intermediate result are obtained at any time. Overall processing results

are presented by using performance curves which shows that the quality of

result becomes better when the processing time increases according to the

PREFACE

xiii

definition and the properties of anytime algorithm.

The proposed AAIP method and the adaptive scheduling scheme are

coded in C/C++ programming languages because of its wide acceptance in DIP

(Digital Image Processing) community. The programming environment is

Microsoft visual studio 2005 and the system environments are Windows XP,

Intel (R) Pentium (R) M processor 1.30 GHz, 512 MB memory, and Sony DSC T7

camera.

Wyne Wyne Kywe

Graduate School of Information Science and Technology

Aichi Prefectural University

JAPAN

xiv

Acknowledgements

With great pleasure, I would like to express my thanks to all the people who

helped me through this research period. At first, special thanks are due to

Professor Kazuhito Murakami, my advisor, who gave me invaluable advice and

instructions and helps me to implement this research work by questioning and

providing research materials.

I am grateful to Professor Yasuyoshi Inagaki, former Dean of Graduate

School of Information Science and Technology, for his kindness and suggestion

to attend the Ph.D course.

I would like to express my gratitude to Professor Dr. Si Si, and Professor

Dr. Win Win Htay, Head of Department of Engineering Mathematic, Yangon

Technological University, Yangon, Myanmar who have helped me to extend the

study of my life long fascinated subject.

I would like to express my thanks to Professor Tetsuo Ideguchi, Dean of

Graduate School of Information Science and Technology, Aichi Prefectural

University and Professors, Associate Professors and teachers who kindly treat

and help me.

Also special thanks to Professor Takashi Okuda and Professor He

Lifeng, the members of my dissertation committee for their kindness reading

my dissertation and giving suggestions.

I always thanks to the past and present members of Murkami’s

laboratory who eager to help me by giving invaluable advice, and made

discussions for research theme, by providing useful comments and giving

suggestion, and listened patiently to my ideas.

Finally, I owe a lot to my beloved parents, who encouraged and helped

me at every stage of my personal and academic life. I would like to express my

gratitude to my respectful father, U Chit Kywe, who wants me to be an

educated person, deeply gratitude to my mother, Daw Phwar Zin, who always

care and encourage me to continue my study. I would like to express my

greatest gratitude for all of my brothers and sisters who support and help me to

continue my study. This work was supported in part by the Aichi Prefectural

Government, and the NEC C&C foundation. This work would have been

impossible without their collective support.

1

Chapter 1

Introduction

1.1 Background, Problems, and Related Works

In our daily life, we all have to do many tasks such as shopping, having lunch,

doing household works and many more, and we have a time limit i.e., 24 hours

in a day. Mostly, we are not considered on the time and the overall performance

or quality of results of our tasks in an enough time. In case of limited/restricted

time, for e.g., a professor has to do 3 tasks, i.e., task 1 (having breakfast) takes 20

min, task 2 (preparation documents for conference) takes 30 min, and task 3

(checking documents for trip) takes 15 min in the limited time 60 min. In such

case, how do you finish these tasks and evaluate the overall performance (i.e., to

finish all tasks in the limited time) of the quality of result? One can finish task 1

in 15 min, and then do other tasks in the required time or finish task 2 in 25 min

and do other tasks or finish task 1 in 18 min, task 2 in 28 min and task 3 in 14

min and so on. So, the overall performance would not be 100%, but all tasks can

be partially finished and the overall performance would be less than 100%.

In such example, there are several different ways to perform the tasks

partially in the restricted time by dividing the task or by reducing the required

time. Thus, it is necessary to consider the questions like ‚How to perform the

task to be partially finished?‛ or ‚How to reduce the required time?‛The basic

idea is by dividing the task into sub-tasks, so that the required time of each

sub-task is less than the total required time of task and this task can be partially

performed.

Thus, this idea can be applied to the real-time system that is

encountered in the time and quality trade-off problem. Some of the trade-off

problem between the processing time and the quality of result can be solved by

reducing the required time of a task or by partially performing a task. By

performing the sub-tasks of each task with required time, the overall

performance of the quality of result can be realized. How to schedule these

tasks in the limited time in order to realize the overall performance of the

quality of result is also important.

In the research environment, when the system is required to work in

CHAPTER 1- INTRODUCTION

2

real-time, the problem of time constraint has been involved. The computation

would become meaningless if the timely result is not acquired under resource

constraint such as execution time, CPU power, cost, and memory even though

the result is highly accurate. To give a priority or a weight to each task is a

method to control CPU, but there is no guarantee of finishing the task within

the deadline or tact time. Furthermore, the processing time involvement is the

important aspect in the hard real-time system. The solutions to solve this kind

of problem are by using hardware such as multi-processor, parallel processing

and/or by using software such as algorithm, pipeline, cache or reduce the

quality by size. From the algorithmic and/or software point of view, the

guarantee of hard real-time deadline has been involved as a challenging

problem.

Generally, there are many kinds of problems encountered in real-time

system, for e.g., in the hard real-time system, most of the tasks are scheduled by

the required time that is based on the given deadlines. If the tasks do not meet

the hard real-time deadline are discarded. Conventional scheduling method by

imprecise computation solves this problem by discarding the optional sub-tasks

that could not meet their deadlines. J.W.S. Liu et al. reviewed and proposed the

scheduling by their imprecise computation method that provides the

scheduling flexibility by trading off the quality of result to meet the

computation deadlines [1]. W.K Shih et al. proposed the fast algorithm to

minimize the weighted errors for the scheduling under timing constraints by

the approach of imprecise computation [2].

In addition, if a system has to perform many tasks or the combination of

many tasks in a limited time, it would be difficult to achieve the overall

performance of the quality of result in that limited time. If each task could

obtain the result at every step in the way of computation time the overall

performance or result of all tasks could be partially realized during the

computation time. The allocation of the time requirement of each task could be

distributed even though the quality is not perfect. Conventional scheduling

methods solve this problem by using high performance CPUs or by using

parallel processing and so on. There still remains a possibility to obtain more

accurate result if CPU’s computational power was left over.

The purpose of this work intended such a field that the cost or the

generation of heat is limited as automobiles or embedded systems and RTIP

(Real-Time Image Processing) system such as object tracking and image

transmission systems. It is especially emphasized on the task assignment and

CHAPTER 1- INTRODUCTION

3

scheduling problem from the viewpoint of algorithmic approach by the fixed

priority pre-emptive scheduling for the short-term scheduler on uni-processor

system by using the modified imprecise computation method and the concept

of anytime algorithm.

1.2 Real-Time Image Processing (RTIP)

In real-time image/video processing, if we seriously consider the less processing

time in a particular task, the quality of image processing would becomes

sacrifice and conversely, if we adhere to the quality of image processing too

much, the processing time might needed much time. The purpose of real-time

image processing system involves with the improvement of the quality of video

(image sequence) by enhancing the image in pre-processing like noise

reduction.

Furthermore, many imaging applications are time critical and are

computationally intensive. For example, in image transmission system, digital

images require huge amounts of space for storage and large bandwidths before

the transmission of image, so it is necessary to process these images in

pre-processing such as filtering and enhancement. The outputs are required not

only the perfect but also the timely imperfect results with deadline satisfaction.

Moreover, the quality of image processing is usually evaluated by high

extraction rate or low error rate. It is easy and clear to evaluate single image

processing task, but if the system is composed of many tasks, it would becomes

difficult to evaluate the combined processing result because of the results of

image processing vary according to the combination of the methods and tasks.

For instance, in image/video tracking or image transmission which is necessary

to realize the intermediate result i.e., to achieve the better resolution with data

transmissions and computations as low as possible, during the execution time.

There are many methods for image/video processing results reported in

the real-time image processing from the different viewpoints like hardware

platform such as FPGAs, DSP (Digital Signal Processors), GPU, Hybrid and PC

based systems, and software platform such as pipeline, parallel processing and

algorithm. It is dealing with the vast amount of data and the computation time

and there is no concept of given computation time.

So, the problems of time constraint have been involved with the

processing of image processing tasks for e.g., the processing of image sequence

is a typical real-time system whose processing time is restricted in the duration

CHAPTER 1- INTRODUCTION

4

of 1 frame, the required computation time of image sequence is 30 fps i.e., the

processing of 30 image frames required 1 sec computation time.

Hasegawa, et al., solved the time-quality trade-off problem by selecting

the best combination of system parameters in order to fit the result by sample

figure [3]. Garvey et al., solved like this kind of problem with their

design-to-time real-time scheduling approach to real-time problem solving

demonstrated its feasibility in a complex real-time application by describing

simulation experiments for Distributed Vehicle Monitoring Testbed (DVMT)

application [4][5].

Although many approaches from the viewpoint of processing time are

reported in the region of system planning in AI [6-10], on the other hand, there

are a few reports in the scheduling of image processing [3]. There are many

methods for real-time application are discussed as above, the approach to the

digital image processing methods by anytime algorithm and imprecise

computation to solve time-quality trade-off problem in real-time image

processing is not reported yet.

 So, in this thesis, I introduce an approach to how to schedule the

digital image processing tasks by the adaptive scheduling method by the

concept of anytime algorithm in order to perform the task by its sub-task in

pre-processing in RTIP under time restriction. By using the basic idea, in RTIP

system, a task can be divided into small sub-tasks in order to perform the

combination of tasks with some restrictions like processing time and memory

usage by giving the partial overall processing result. Thus, it is necessary to

analyze what kind of image processing tasks can be divided into sub-tasks.

These explanations will be expressed in the later chapters.

1.3 Scheduling with Time Constraint

The most important fact to realize an adaptive scheduling is to modify a task

which returns the result at anytime in the way of computation time. If each task

could return the result at anytime, the overall processing result would be

realized even though the quality of result is not perfect under the processing

time constraint. Thus, the adaptive scheduling can be constructed by partially

performed the task by its sub-task with allocated time requirement in order to

provide the overall processing result under time constraint.

The basic idea of a task to be performed partially is at first a task is

CHAPTER 1- INTRODUCTION

5

logically divided into mandatory sub-tasks in mandatory part and the optional

sub-tasks in the optional part respectively. Then, these sub-tasks are performed

by mandatory steps and the optional steps by giving the parameter such as tact

time and the required sub-task numbers of the mandatory sub-tasks. Here, it is

necessary to check the condition that the sum of the computation time of each

sub-task is less than or equal to the current computation time. The overall

processing result can be realized by checking the condition that the current

overall processing result is greater than or equal to the pre-defined overall

processing result which is evaluated by the minimum required number of

mandatory sub-task. So, the number of discarded optional tasks can be

minimized while realizing the sub-optimal overall processing result.

The second important idea is how to optimize the performance of the

overall processing result. There are too many combinatorial procedures to

satisfy the condition that the total time is less than the tact time. For example, if

the system is composed of N tasks, say P1, P2, …, PN and the required processing

time t1, t2,…, tN respectively. So, the total processing time tn = t1 + t2 +…+ tN will be

needed to perform all of N tasks. If the processing time is restricted into Tk, here,

Tk < tn, it is difficult to produce the intermediate result at current execution time

t. Figure 1.1(a) shows pictorially the relation between the restricted time Tk and

the required processing time t1, t2,…, tN for the tasks P1, P2, …, PN. As shown in

this figure, when the time is restricted, at least one of the task e.g., PN could not

be performed. In order to perform all of the tasks in a restricted time, by

modifying the tasks P1, P2, …, PN to P1´, P2´, …, PN´ respectively, so that the total

processing time t1´+t2´+…+tN´ becomes less than or equal to Tk as shown in Fig.

1.1(b).

(a) Conventional (b) Proposed

Fig. 1.1: Combination of tasks in the restricted time

Thus, in this thesis, how to modify the tasks to be partially performed

and how to schedule these tasks in the restricted time will be mainly discussed

using image processing tasks as an example. By using the concept of anytime

algorithm and imprecise computation, some of the image processing algorithms

are modified and the quality functions for the overall performance are

evaluated.

CHAPTER 1- INTRODUCTION

6

Figure 1.2 shows the basic frame work of an image processing system

which is composed of many tasks in low, mid and high level processing. There

are some restriction like processing time and memory storage, and the tasks are

performed by many steps. For this case, it is difficult to extract the useful

information for e.g., extraction of the image attribute for the classification. In

such kind of problem, it can be solved by using anytime algorithm which is

suitable for solving the time-quality trade-off problem.

Fig. 1.2: The basic framework

1.4 Organization of Thesis

Anytime algorithm tool is used in order to implement the proposed method, so,

the general concepts of anytime algorithm including its definition, properties

with specific features of anytime algorithm, type of anytime algorithm (contract

and interruptible), performance profile/curve (i.e., to measure the quality of a

task), type of performance profile (i.e., which performance curve should be

used to present the result), reduction theorem, compilation process, and

monitoring are described in chapter 2. Moreover, the general explanations of

imprecise computation such as its definition, the basic workload model, and the

overhead time that is related to the proposed scheduling method are also

described in chapter 2. Finally, the chapter summary is included.

In chapter 3, the general explanation about scheduling mechanism

including time constraint and the type of task (i.e., dependent and independent),

and the characteristic of scheduling are described. Then, the proposed

Low level processing

AA Image enhancement

(Spatial filtering)

Mid level processing

AA Morphological processing

(Edge detection, Boundary extraction)

High level processing

AA Image analysis

(Classification, Feature extraction)

CHAPTER 1- INTRODUCTION

7

scheduling model is expressed by its basic workload model, definition and

terminology, scheduling algorithm, evaluation of the overall processing result,

determination and analysis of the quality of overall processing result, and

discussion. Finally, the chapter summary is explained.

In chapter 4, the briefly description of existing digital image processing

methods and operations are presented. The conventional image processing

(CIP) methods such as filter type, gradient type, morphological type, and

condition type are converted to anytime algorithmic image processing (AAIP)

methods by the concept of anytime algorithm. In particular, AAIP methods

using filter type for low pass filtering by Gaussian and Mean filters, high pass

filtering by basic hi-pass spatial filter, using gradient type for edge detection by

Prewitt and Sobel filters, using morphological type for boundary extraction by

structuring element, and using condition type for thinning by Hilditch’s method

respectively are expressed. The experimental results of AA noise reduction, AA

edge detection, AA sharpening, AA thinning, and AA boundary extraction

show that coarse to fine results can be obtained at intermediate processing time.

After that, the quality of result of each task is presented by using performance

curves according to the properties of anytime algorithm. Finally, the chapter

summary is described.

In chapter 5, how to schedule the tasks by imprecise computation is

explained by theoretical explanation of imprecise computation model, and

definition and terminology. Then, the algorithms for task assignment and

scheduling under time constraint are expressed by algorithms 1, 2, 3, and 4. The

experiment is done by simulation and its experimental results for the overall

processing result are expressed by figures and tables. After that, the adaptive

scheduling of the combination of image processing tasks in the restricted time is

experimented by using the sub-tasks number as input parameter for the

dependent case. Then, its experimental result is presented by graphical and

tabular forms. After that, the effectiveness of the proposed method is described.

Finally, the chapter summary is expressed.

In chapter 6, how to evaluate the formulation of the quality function of

each AAIP method is described. Then, the overall performance of image

processing tasks including realization, evaluation i.e., modeling of the

time-precision functions, and performance curves are explained for the

dependent case. Then, realization of the overall quality in image processing and

the scheduling is expressed by the experimental results and performance curves.

Finally, the chapter summary is described.

CHAPTER 1- INTRODUCTION

8

In chapter 7, the relation of anytime algorithmic image processing and

the biometric theme in order to apply to security system is explained. In

particular, the biometric theme for the extraction of contact lens for the security

purpose is realized. So, how to extract the contact lens by using thermo vision

images as the pre-processing steps in the application of biometric is described.

Then, the necessary condition of how to extract/detect the contact lenses for the

hard and the soft lens including thermal property, transition of temperature,

and procedures of contact lenses extraction are expressed. After that, the

experimental results and discussion are presented. Finally, the chapter

summary is explained. Finally, the contribution of this work, discussion,

conclusion and the future works are explained in chapter 8.

References

[1] J.W.S. Liu, K.-J. Lin, W.K. Shin, A.C.S Yu ‚Algorithms for Scheduling Imprecise

Computation‛ IEEE Trans. Computers ,Vol. 19,No.9, Sept. 1991,pp. 156-1,173.

[2] W.-K. Shih and J.W.-S. Liu, ‚Algorithms for Scheduling Imprecise Computations

with Timing Constraints to Minimize Maximum Error,‛ IEEE Trans. Computers.,

vol. 44, no.3, pp. 466-471, Mar 1995.

[3] Hasegawa, H. Kubota, and J. Toriwaki, ‚Automated construction of image

processing procedures by sample figure presentation‛, Proc. of 8th Int’l Conf. on

Pattern Recognition (ICPR1986), Vol. 1, pp.586-588, Oct. 1986.

[4] A. Garvey, V. Lesser. ‚Design-to-Time Real-Time Scheduling‛, IEEE Transactions

on Systems, Man and Cybernetics, 1993

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

[5] Garvey, Alan and Victor Lesser. ‚Design-to-time Scheduling and Anytime

Algorithms‛, SIGART Bulletin, 7 (2):16--19 (1996).

[6] T. Dean and M. Boddy, ‚An analysis of time-dependent planning‛, Proc. AAAI-88,

pp.49-54, AAAI, 1988.

[7] S. Zilberstein and S. J. Russell. In S. Natarajan ed., Approximate reasoning using

anytime algorithms, imprecise and approximate computation, Kluwer Academic

Publishers, 1995.

[8] J. Grass and S. Zilberstein. In M. Pittarelli ed., Anytime algorithm development

tools, SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation

Scheduling, 7(2):20-27, 1996.

[9] S. Zilberstein, Ph.D dissertation, ‛Operational rationality through compilation of

anytime algorithm‛, Computer Science Division, University of California at

Berkeley, 1993.

*10+ S. Zilberstein, ‚Using anytime algorithms in intelligent systems‛, AI Magazine, vol.

17, no. 3, pp. 73-83, 1996.

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

9

Chapter 2

Anytime Algorithm and Imprecise Computation

2.1 Introduction

The term ‚anytime algorithm‛ was coined by Thomas Dean and Mark Boddy in the

late 1980s in the context of their work on the time dependent planning [1].

There has been a considerable amount of work on designing and using

algorithms that offer gradual improvement of quality of results, both before and

after Dean’s coining of the term ‚anytime algorithm‛. Early application of such

algorithms can be found in medical diagnosis and mobile robot navigation.

The approach is known under a variety of names, including flexible

computation, resource bounded computation, just-in time computing,

imprecise computation, design-to-time scheduling, or decision-theoretic meta

reasoning. All these methods attempt to find the best possible answer in a given

operational constraints such as time, cost, and resource. It has been applied for

the application in such are sensor interpretation and path planning (Zilberstein

1996; Zilberstein and Russell 1995) [2][3] and in feature selection which is used to

improve the performance of learning algorithms by finding a minimal subset of

relevant features by Mark Last et al. [4] and so on.

For the conversion of CIP method to AAIP method, anytime algorithm

is used as a tool. Thus, this chapter provides the general concept of anytime

algorithm including its definition, the properties that has specific features to

apply to the image processing methods, type of anytime algorithm i.e., which

type of anytime algorithm can be used for the implementation of AAIP tasks,

type of performance curve i.e., what kind of performance curve can be used to

represent the quality of image processing result for each AAIP method,

monitoring and so on. It is to be noted that the following explanations are based

on S. Zilberstein’s papers *2+*3+*5][6][7].

2.2 Anytime Algorithm

2.2.1 Definition

Anytime algorithm is an algorithm whose quality of results improves gradually

as computation time increases and it offers a trade-off between the resource

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

10

consumption and output quality.

2.2.2 General Concepts

Anytime algorithm is suited for the problem which has the trade-off between

the processing (computation) time and the accuracy since the accuracy will be

improved according to the increase of computation time. The computation of

anytime algorithm extends the traditional idea of computational procedures by

allowing it to return many possible approximate answers to any given inputs.

The speciality of anytime algorithm is the use of well-defined quality measures

to monitor the progress in problem solving and allocate the computational

resources effectively. In this approach, these concepts are applied to the CIP

methods that have iterative tasks by using some of the following metrics which

are applied in the construction of AAIP methods.

 According to S. Zilberstein’s paper [2] various metrics can be used to

measure the quality of a result which is produced by an anytime algorithm. The

following metrics have been proved useful in the construction of AAIP

methods:

(1) Certainty – this metric reflects the degree of certainty that the result is

correct. The degree of certainty can be expressed using probabilities,

certainty factors, or any other approaches.

In this approach, the CDF (Cumulative probability Distribution

Function) is used for the measuring of certainty for each task and it is described

by performance curve.

(2) Accuracy – this metric reflects a measure of the difference between the

approximate result and the exact answer. Many anytime algorithms can

provide a guarantee of a bound on the error, where the bound is reduced

over time.

It can be expressed by numerical methods such as forward differences,

backward differences, and relative errors.

(3) Specificity – this metric reflects the level of detail of the result. In this case,

anytime algorithm always produces the correct results, but the level of detail

increases over time.

 In order to perform the evaluation of approximated result at current

step, it is necessary to use the previous result according to the concept of

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

11

anytime algorithm. Also, the result of the current step is used for the calculation

of next step and so on. Thus, the level of detail increases as processing time

increases.

An anytime algorithm that does not use another anytime algorithm as a

component is called an elementary anytime algorithm. A non-elementary

anytime algorithm is also called a compound algorithm. In this part, the

differences of the traditional programming and anytime algorithmic

programming are explained. Existing programming techniques produce useful

anytime algorithm. Although many traditional programming techniques can

produce useful anytime algorithm, programming with anytime algorithm is

different from the traditional programming. It can be efficiently constructed

using standard programming techniques and it has been partly validated by a

number of applications.

The principles of modularity can be applied to anytime algorithmic

computation. In addition, large real time systems can be composed of anytime

algorithm components. A real-time environment can be characterized by a

time-dependent utility function. The problem of time allocation within such

systems can be handled by a special compilation technique. Hence, depending

on these facts, anytime algorithmic programming is based on the existing

programming techniques.

2.3 Properties of Anytime Algorithm

This section explains the properties of anytime algorithm according to S.

Zilberstein’s paper [1]. In general, anytime algorithm has the properties that

satisfy the following features.

(1) Measurable quality:

The quality of result can be defined exactly.

(2) Recognizable quality:

The quality of an approximated result can easy to determine at

intermediate processing time.

(3) Monotonicity:

The quality of result is an increasing function of time and input quality.

(4) Consistency:

The quality of result is connected with computation time and input

quality.

(5) Diminishing returns:

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

12

The solution’s quality improves much larger than previous stages of

computation and diminishes over time.

(6) Interruptibility:

The algorithm can be stopped at any time and given some answer.

(7) Preemptability:

The algorithm can be stopped and started again at any time with

minimal overhead.

 Modification of CIP methods to AAIP methods is based on these

properties. So, the detailed explanations of how to modify these algorithms are

described in the later chapters.

 Figure 2.1 expresses pictorially the anytime algorithmic form of a task

based on the definition of anytime algorithm and its properties.

Fig. 2.1: Anytime algorithmic form of a task

2.4 Type of Anytime Algorithm

There are two types of anytime algorithm, i.e., contract and interruptible.

2.4.1 Contract

Anytime algorithm whose quality varies with time allocation although capable

of producing results, it must be given a particular time allocation (total

computation time) in advance. It requires the determination of the total

run-time when activated. Although this algorithm can produce the results for

any given time allocation, if it is interrupted before the expiration of the

allocation, it may not obtained the require results.

Quality of Results

Computation Time

 Less

 Low High

 More

Possible

result

Approximated

result

 Exact

result
Any

Input
Output

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

13

2.4.2 Interruptible

Anytime algorithm produces the results of the ‚advertised quality‛ even when

interrupted unexpectedly, whose total run-time is unknown in advance. It can

be queried at anytime algorithm for a solution and output the result at any step.

2.4.3 Differences Between Interruptible and Contract Anytime Algorithms

Interruptible

 the total execution time is unknown in advance

 can be interrupted at any time to produce the results

 it is always contract algorithms

 more complicated to construct than contract algorithm and can be

 constructed based upon a contract algorithm

 flexible and widely apply

 Contract

 total execution time must be known in advance

 cannot be interrupted at any time, if it interrupted between the

 execution time, it cannot obtain the useful results

 it is not interruptible algorithms

 it is easy to construct

2.5 Performance Profile

Performance profile, that is necessary to monitor the quality of result.

2.5.1 Definition

A performance profile of an anytime algorithm, Q(t), denotes the expected

output quality with execution time t, i.e., a mapping from time allocation to the

expected output quality. It specifies the quality distribution for any given time

allocation.

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

14

2.5.2 Representation of Performance Profile

Performance profiles can be represented either by a closed formula or as a table

of discrete entries. The following descriptions are especially referred to S.

Zilberstein’s paper [6].

(1) Closed Formula Representation

Since performance profiles are normally monotone functions of time,

they can be approximated using a certain family of functions. Once the quality

map is known, the performance information can be derived by various curve

fitting techniques. For example, Boddy and Dean [1989] used the function:

to model the expected performance of their anytime algorithm

planner and also S. Zilberstein and S. Russell used this function to define the

performance profile for the calculation of maximal quality of composition of

two tasks as an example [3]. M. Last et al. defined a criterion for measuring the

quality of the algorithm results and study the algorithm performance profile on

several benchmark datasets [4].

Performance distribution profiles can be approximated using a similar

method by using a certain family of distributions. For instance, if the normal

distribution is used, one can apply the same curve fitting techniques to

approximate the mean and variance of the distribution as a function of time. In

this approach, cumulative probability distribution function (CDF) is used for

the representation of the performance profile of each modified AAIP

procedures. The advantage of using a closed formula representation of

performance profiles is that symbolic compilation can be performed once a

parametric representation of each profile is given. The result of such

compilation can be used each time members of that family are compiled. Figure

2.2 represents the graphical representation of performance profiles.

Fig. 2.2: Graphical representation of performance profiles

Quality

Time

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

15

(2) Discrete Representation

Table 2.1: Tabular representation of performance profile for 4 tasks

Processing

time (s)

Assignment of tasks

by processing time and quality
Total

Quality

Q t1 q1 t2 q2 t3 q3 t4 q4

0 0 0 0 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0

0.02 0 0 0 0 0 0 0 0 0

| | | | | | | | | |

| | | | | | | | | |

0.19 0 0 0.078 0.498 0 0 0.11 1 0.405138

| | | | | | | | | |

| | | | | | | | | |

| | | | | | | | | |

| | | | | | | | | |

1.39 0.406 1 0.14 1 0.734 1 0.11 1 1

Table 2.1 shows the performance distribution profile of the proposed

scheduling algorithm for 4 tasks as an example. The discrete representation of

performance profiles is based on a table that specifies the discrete probability

distribution of quality for certain possible time allocations. For this purpose, the

complete range of qualities has to be divided into discrete qualities q1, …, q4

depends on each task, the range is [0, 1]. The entry q1, …, q4 in the table

represents the discrete probability that has corresponding time allocation t1, …,

t4 for the tasks 1, 2, 3, and, 4 with the actual total output quality Q that would be

in the range [0, 1]. The size of the table is a system parameter that controls the

accuracy of performance information.

2.5.3 Type of Performance Profile

An algorithm may have several performance profiles, each representing its

performance when operating in a different machine environment i.e.,

depending on CPU performance. There are many types of performance profile

and the following are the few of ones. Performance Distribution Profile (PDP) is

used for the measuring of the quality of result for the AAIP procedure and

conditional performance profile (CPP) is used to the evaluation of quality

function for the optimization of total performance of the scheduling method.

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

16

(1) performance distribution profile (PDP)

(2) expected performance profile (EPP)

(3) performance interval profile (PIP)

(4) conditional performance profile (CPP))

and so on.

2.5.4 Finding the Performance Profile of an Algorithm

When an anytime algorithm is implemented on a certain machine environment,

‚How to determine its performance profile?‛ must be considered. In some cases,

the performance profile can be calculated by performing a structural analysis of

the algorithm. For example, an iterative algorithm, e.g., Newton’s method, the

error in the result is bounded by a function that depends on the number of

iterations. In such cases, the performance profile can be calculated once the

execution time of a single iteration is determined. In general, however, such

structural analysis of the code is hard because of the improvement rate of

quality in each iteration and its execution time may be unpredictable. Moreover,

it is depended on the machine environment. To overcome this difficulty, a

general simulation method can be used. In this approach, Monte Carlo simulation

method is used.

Given an anytime algorithm A, let qA (x, t) be the quality of results

produced by A with input x and computation time t; let qA(t) be the expected

quality of results with computation time t; and let pA,t(q) be the probability

(density function in the continuous case) that A with computation time t

produces the results of quality q.

Conditional Performance Profile

Conditional performance profile (CPP) that includes a mapping from

input quality and execution time to a probability distribution of output quality.

A conditional performance profile captures the dependency of output quality

on time allocation as well as on input quality. It characterized the performance

of each elementary anytime algorithm as function of execution time and input

quality.

 A CPP of an anytime algorithm, Pr(qout (qin, t)), denotes the probability of

getting a solution of quality when the algorithm is activated with input of

quality qout and execution time t.

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

17

Fig. 2.3: Graphical representation of a CPP

Figure 2.3 shows a graphical representation of typical CPP. Each curve

represents the expected output quality as a function of time for a given input

quality.

How to construct (create) a conditional performance profile?

Example procedure for constructing a CPP

Step-1: Estimate the average completion time of the algorithms.

Step-2: The system automatically generates a large number of problem

instances and records the quality improvement of the algorithm as a function of

time for each problem.

Step-3: The statistics data, called the quality map of the algorithm, is used to

construct the probability distribution of output quality for a given time.

Step-4: If input quality is a variable, the system repeats the step 1 – 3 for a set of

different initial input qualities.

Sample anytime algorithm (A description of the model of execution)

The following example algorithm represents the typical implementation

of an interruptible anytime algorithm for the construction of pyramidal images.

Input(x, y)

Result INITIALIZATION-STEP (Input(x, y))

REGISTER-RESULT (Result)

x 0; y 0;

while (x < h)

{

 while (y < w)

 {

 Output(x, y) Input(x, y);

 y y + 2;

t

q

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

18

 }

 SIGNAL (TERMINATION)

 HALT

}

w w/2;

h h/2;

2.6 Reduction Theorem

Reduction theorem is a theorem which allows for the construction of contract

anytime algorithms as an intermediate step, before the system is made

interruptible. (S. Zilberstein, 1993)

 For any contract algorithm an interruptible algorithm B can be constructed

such that for any particular input qB(4t) qA(t).

Fig. 2.4: Performance profiles of interruptible and contract algorithms

2.7 Compilation Process

Given a system composed of anytime algorithm i.e., compound algorithms, the

compilation process is designed to: (a) determine the optimal performance

profile of the complete system and (b) insert into the composite module the

necessary code to achieve that performance. The precise definition and solution

of the problem depend on the following factors:

1. Composite program structure – what type of programming operators are

used to compose anytime algorithms?

2. Type of performance profiles – what kind of performance profiles are used

to characterize elementary anytime algorithms?

3. Type of anytime algorithm – what types of elementary anytime algorithms

are used as input? What type of anytime algorithm should the resulting

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

19

system be?

4. Type of monitoring – what type of run-time monitoring is used to activate

and interrupt the execution of the elementary components?

5. Quality of intermediate results – what access does the monitoring

component have to intermediate results? Is the actual quality of an

intermediate result known to the monitor?

Depending on these factors, the different types of compilation and

monitoring strategies are necessary to be considered.

2.8 Runtime Monitoring

Monitoring of execution is an important component of an anytime algorithmic

system. It plays a vital role in anytime algorithm computation. The purpose of

run-time monitoring is to reduce the effect of uncertainty on the performance of

the system. Uncertainty regarding the performance of the system is

characterized by its CPP.

 Two monitoring strategies have been developed for the system. The

first is a fixed-contract monitoring scheme and the second is an adaptive

monitoring scheme. The appropriate type of monitoring will typically depend

on the source of uncertainty and the degree of uncertainty.

2.9 Imprecise Computation

2.9.1 What Is Imprecise Computation

Imprecise computation is the particularization of anytime algorithm, and its

concept is logically dividing the task into mandatory and optional part. Then,

mandatory task is performed by mandatory step and the optional part is

performed by the left steps [8-10].

2.9.2 Imprecise Computation Model

In the conventional imprecise computation, there are many methods like

milestone, sieve, and multiple versions. In the conventional method, the task is

logically divided into mandatory and optional sub-tasks as shown in Fig. 2.5.

Optional sub-task is used to refine the result of mandatory sub-task. Thus, it has

only 2 results.

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

20

Fig. 2.5: Ways in the conventional method

Fig. 2.6: Ways in the proposed method

In this proposed method, the task is logically divided into n sub-tasks

and these sub-tasks are performed by many steps as shown in Fig. 2.6. Thus, it

has more than 2 different results.

2.9.3 Overhead Time

Suppose that a task is divided into n sub-tasks performed by n steps, and

sub-task 1 is performed by step 1, sub-task 2 is performed by step 1 and 2, and

so on. For each sub-task the previous result is used for the calculation of next

step. So, there is a few amount of processing time for the next step. The

approximated processing time t1, t2, …, tk of sub-task 1, 2, …, k are

t1 = t0 + △t1

t2 = t1 + △t2

tk = tk-1 + △tk

Where

 t0 = initial processing time

 ti = the required processing time at ith step or ready time for execution,

i = 1, 2, …, k

Task

Mandatory part Optional part

Mandatory sub-task Optional sub-task

Mandatory part Optional part

 Sub-task 1 Sub-task 2 Sub-task k Sub-task n Sub-task k+2 Sub-task k+1

Task

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

21

 △ti = a few amount of additional processing time ≥ 0, i = 1, 2, …, k

In general,

 tn = tn-1 + △tn

Fig. 2.7: Process flow of n sub-tasks of a task

Thus, it might be said that there is a few amount of overhead time

between the processing steps. This proposed method is modified from the

conventional imprecise computation technique and it can be applied to the task

assignment and scheduling. For each sub-task, it has corresponding steps to be

performed the operation, the processing stage for the sub-task k is expressed as

shown in Fig. 2.7.

2.10 Summary

This chapter explained the general concept of anytime algorithm which is

applied to the construction of anytime algorithmic image processing (AAIP)

procedures including definition, properties, kinds of anytime algorithm namely

interruptible and contract and their differences. Then, performance profiles and

its representation by graphical and tabular and sample anytime algorithm for

the construction of pyramidal images as an example. After that, compilation

process and rum-time monitoring are explained. The type of performance

profiles i.e., PDP, EPP, PIP, and CPP, and how to construct them, in particular,

CPP construction is described. Finally, the general concept of imprecise

t1 = t0 + △t1

t2 = t1 + △t2

tn = tn-1 + △tn

CHAPTER 2-ANYTIME ALGORITHM AND IMPRECISE COMPUTATION

22

computation including its definition, the basic workload model and overhead

time are explained.

References

[1] T. Dean and M. Boddy, ‚An analysis of time-dependent planning‛, Proc. AAAI-88,

pp.49-54, AAAI, 1988.

[2] S. Zilberstein, ‚Using Anytime Algorithms in Intelligent Systems‛, AI Magazine,

vol. 17, no. 3, pp. 73-83, (1996).

[3] S. Zilberstein and S. J. Russell. In S. Natarajan (Ed.), ‚Approximate Reasoning

Using Anytime Algorithms, Imprecise and Approximate Computation‛, Kluwer

Academic Publishers, (1995).

[4] M. Last, A. Kandel, O. Maimon, E. Eberbach, ‚Anytime Algorithm for Feature

Selection‛, Department of Computer Science and Engineering, University of

South Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA.

[5] J. Grass and S. Zilberstein. In M. Pittarelli (Ed.), ‚Anytime Algorithm

Development Tools‛, SIGART Bulletin Special Issue on Anytime Algorithms and

Deliberation Scheduling, 7(2):20-27, (1996).

[6] S. Zilberstein. Ph.D. dissertation, ‚Operational Rationality through Compilation

of Anytime Algorithm‛, Computer Science Division, University of California at

Berkeley, (1993).

[7] J. Grass and S. Zilberstein. In M. Pittarelli (Ed.), ‚Anytime algorithm development

tools‛, SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation

Scheduling, 7(2):20-27, (1996).

[8] J.W.S. Liu, K.-J. Lin, W.K. Shin, A.C.S Yu ‚Algorithms for Scheduling Imprecise

Computation‛ IEEE Trans. Computers ,Vol. 19,No.9, Sept. 1991, pp. 156-1,173.

[9] J.W.-S. Liu, K.-J. Lin, W.-K. Shih, A.C.-S. Yu, J.-Y. Chung, and W. Zhao,

‚Algorithms for Scheduling Imprecise Computations,‛ Computer, vol. 24, no. 5,

pp. 58–68, May 1991.

[10] J.-Y. Chung, J.W.-S.Liu, and K.-J. Lin, ‚Scheduling Periodic Jobs that Allow

Imprecise Results,‛ IEEE Trans. Computers, vol. 19, no. 9, pp. 1,156–1,173, Sept.

1990

[11] W.-K. Shih, J.W.-S. Liu, and J.-Y. Chung, ‚Algorithms for Scheduling Imprecise

Computations to Minimize Total Error,‚ SIAM J. Computing, vol. 20, no. 3, July

1991.

[12] W.-K. Shih and J.W.-S. Liu, ‚On-Line Scheduling of Imprecise Computations to

Minimize Error,‛ Proc. 13th Real-Time Systems Symp., IEEE, Dec. 1992.

[13] W.-K. Shih and J.W.-S. Liu, ‚Algorithms for Scheduling Imprecise Computations

with Timing Constraints to Minimize Maximum Error,‛ IEEE Trans. Computers.,

vol. 44, no.3, pp. 466-471, Mar 1995.

[14] K.-J. Lin and S. Natarajan, ‚Concord: A System of Imprecise Computations,‛ Proc.

Compsac, IEEE , pp. 75–81, Oct. 1987.

23

Chapter 3

 Scheduling with Resource Constraint

3.1 Introduction

In everyday life, we all have to do many things such as household work, school

work and company work. These works have many tasks like shopping, going to

bank for payments, and going to university for study etc. It is necessary to make

a schedule to do these tasks in time, and not in time. For the case of in time,

sometimes it has constraints like time, and cost. In order to make a schedule of a

set of computer tasks is to determine when to execute which task, and what is

their order etc. for uni-processor, multi-processor or distributed system. Then,

assign the task to the specific processors.

In a real time system such as embedded systems, most of the tasks have

been scheduled by the required time that is based on the given deadlines.

Processes or tasks that are not able to meet the given deadline are aborted. So, it

could not perform the tasks that cannot meet the deadline. And also, if the

system has to perform many tasks in a limited time, it would be difficult to

obtain the overall performance in that limited time. If each task can obtain the

result at every step in the way of computation time, the overall performance for

all of the tasks could be realized and total processing time could be reduced

although the quality is not perfect.

Moreover, in a real time scheduling system, a task has certain amount of

processing time to complete its execution i.e., deadline. After finished its

execution the maximum response of this task is obtained. It can be said that

every tasks have its start time and deadline time to execute its task. Thus, the

result of a task can be obtained if it meets its deadline. If it doesn’t meet its

deadline, it has been aborted.

Garvey and Lesser, 1993; Garvey et al., 1993; Garvey et al., 1994, solved like

this kind of problem with their Design-to-time real-time scheduling approach

which is to solve time-sensitive problems where multiple methods are available

for many sub problems by describing how it can be used to schedule anytime

algorithms [4]. Garvey et al., 1994 also solved the Design to time approach which

is to problem solving that involves designing a solution plan dynamically at

runtime that uses all of the time available to find as good a solution as it can by

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

24

modeling a function of the quality of individual sub-tasks as a set of interrelated

computational tasks, with alternative ways of accomplishing the overall task to

provide a range answers of different qualities for the overall quality of these

tasks [5].

3.2 Scheduling Mechanism

This section describes the pre-emptive static scheduling scheme based on

anytime algorithm and imprecise computation in order to optimize the overall

performance while reducing the idle/rest time under time constraint on uni-

processor system. In order to achieve the optimal overall performance in the

restricted time, by assigning the tasks that have already known their

computation time at each step and by distributing the allocation of required

processing time of each sub-task.

3.2.1 Scheduling with Time Constraint

When the system has many tasks to do under time restriction, it is difficult to

obtain the overall performance in that restricted time i.e., hard or soft real-time

deadlines. If all of the tasks have the relations i.e., dependent task, it is difficult

to obtain the combined overall processing result of these tasks. Depending on

the specialized purpose, a system which composed of many tasks should be

considered the following cases.

3.2.1.1 Dependent task

If a system has N tasks, and these tasks have a relation i.e., the result of task 1

has to use in the calculation of task 2, and the result of task 2 is has to use in the

calculation of task 3, and so on. Thus, these tasks are called dependent tasks.

3.2.1.2 Independent task

If the tasks are not related each other, i.e., the result of a task is not necessary to

use in another task. Thus, it is necessary to consider the priority of tasks i.e.,

which task will do first and other will do next and so on and these tasks are

called independent tasks.

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

25

3.2.1.3 Dependent and independent tasks

If some of the tasks are related each other and others are not. So, these tasks can

be considered as just combination of tasks.

3.2.2 Characteristic of Scheduling

Table 3.1 shows the characteristic of scheduling problems and the characteristic

such as the type of task, release time, and deadlines of proposed algorithm.

Table 3.1: Characteristic of scheduling problems

Characteristic of scheduling problems Proposed algorithm

Process/task type

(a) Static

(b) Periodic

(c) Asynchronous

(d) Both

Yes

Release time

(a) Unknown in advance

(b) Same

(c) Start of period

(d) Arbitrary

Yes

Deadlines

(a) Unknown in advance

(b) Same

(c) End of period

(d) Arbitrary

Yes

Process synchronous

(a) Preemptive (interruptible)

(b) Resource constraint

(c) Run-time mechanism

(d) Non-preemptive

(e) General exclusion

Yes

Computation times

(a) Uniform

(b) Arbitrary integer

(c) Arbitrary real

Yes

Number of processors

(a) 1

(b) 2

(c) n (pre-assigned)

(d) n

Yes

Processor speeds
(a) Identical

(b) Arbitrary

Yes

Measures of performance

(a) Schedule length

(b) # of processors

(c) Lateness

Yes

Optimality
(a) Heuristic

(b) Optimal

Yes

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

26

3.3 Proposed Scheduling Mechanism

This proposed scheduling model is constructed based on the imprecise

computation model and the concept of anytime algorithm focuses on the

time-quality trade-off problems encountered in real-time system. If a system

has combination of tasks and these tasks return a partial result at every step,

then they can be scheduled by distribution of allocating time requirement of

each task to provide the overall processing result within restricted time for all

tasks. It is similar to deliberation scheduling which is the process of allocating

computation time by explicit manipulation of expectations on the behavior of

the environment and taking account for the costs and benefits of the

computational resources (time, cost, etc.) [1],[2].

3.3.1 Basic Workload Model

In this sub-section, how to construct the proposed scheduling model is

described. In the hard real-time system, if the execution time is restricted, i.e.,

the given execution time is less than the required execution time then some of

the combined tasks cannot be finished, so that the overall processing result

cannot be realized. The less important tasks which are not able to meet the hard

real-time deadline are left and unfinished.

A system based on the imprecise computation method is called an

imprecise task system. The imprecise computation method i.e., each task is

broken up into multiple problem solving steps, which is one of the tools to

solve the trade-off problems between the processing time and the quality of

result. Basically, the imprecise task system has two parts say mandatory and

optional. In the conventional method, a task is logically divided into 2 sub-tasks

in two parts say mandatory M and optional O as shown in Fig. 3.1. The

mandatory task must be completed before the deadline of the task to produce

the imprecise result with the acceptable quality. Thus, the imprecise result can

be obtained from the mandatory part. The optional sub-tasks are used to refine

the result of mandatory sub-tasks, so that the more imprecise result or the

precise result can be obtained from the optional part.

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

27

Mandatory part Optional part

Fig. 3.1: Imprecise computation model in the conventional method

Mandatory part Optional part

Fig. 3.2: Imprecise computation model in the proposed method

In this proposed method, each task is logically divided into n sub-tasks,

say 1, 2, …, n and n > 2. For the division of mandatory and optional, the random

number k is used and which is 1 < k < n. The mandatory part has k sub-tasks and,

the optional part has (n-k) sub-tasks to refine the result of the mandatory

sub-tasks as shown in Fig. 3.2.

Definition and Terminology

The followings are the definitions and terminology used in this proposed

scheduling mechanism.

Let us consider the imprecise task system T that composed of a set of N

tasks with the hard/soft real-time deadlines in order to obtain the sub-optimal

schedule for the imprecise overall result under the processing time constraint

on uni-processor system.

Suppose that

T = {𝑇𝑖
𝑛𝑖} , i = 1, 2, …, N

Sub-task 1

Task

Sub-task 2 Sub-task k Sub-task n Sub-task k+2 Sub-task k+1

Task

 Mandatory sub-task Optional sub-task

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

28

In each task, 𝑇𝑖
𝑛𝑖 , the subscript i denotes the task number and the

superscript ni denotes the total number of sub-task of each task i. Each task 𝑇𝑖
𝑛𝑖

is characterized by the parameters which are the rational numbers:

𝑟𝑖 = ready time of task i at which 𝑇𝑖
𝑛 𝑖 becomes ready for execution

𝑑𝑖 = deadline of task i at which 𝑇𝑖
𝑛 𝑖 must be completed

𝑚𝑖
𝑛𝑖 = mandatory processing time of mandatory sub-task of task 𝑇𝑖

𝑛 𝑖 for the

execution of feasible result

Here, the mandatory part is performed for the feasible (acceptable)

result and the required processing time of all sub-tasks in the mandatory part is

combined into 𝑚𝑖 which is the total mandatory processing time of sub-task 𝑚𝑖
𝑗
,

i = 1, 2, …, N.

i.e., 𝑚𝑖 = 𝑚𝑖
𝑗𝑘

𝑗=1

𝑜𝑖
𝑛 𝑖 = optional processing time of optional sub-task of task 𝑇𝑖

𝑛 𝑖 for the execution

of sub-optimal result

𝑡𝑖 = the amount of processing time assigned to the task 𝑇𝑖
𝑛 𝑖

𝑝𝑖 = 𝑚𝑖+𝑜𝑖
𝑛𝑖 = the total processing time of each task 𝑇𝑖

𝑛𝑖 to completion

Feasible schedule

It is a valid schedule which contains a list of the mandatory sub-tasks of

tasks completed by its deadline for the acceptable overall processing result.

Sub-optimal schedule

It is a valid schedule which contains a list of the mandatory sub-tasks

and the optional sub-tasks of tasks completed by its deadline for the imprecise

overall processing result.

Optimal schedule

It is a valid schedule which contains a list of mandatory sub-tasks and

the final optional sub-tasks of tasks for the precise overall processing result.

Rescheduling

If the two schedules have different sub-task numbers with the same

percentage of overall processing result due to the unexpected event or

inaccurate predictions, then it is necessary to do rescheduling.

Idle processing time

The processing time that is not enough to perform any sub-tasks before

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

29

the deadline of related task and before the ready time of next task. If 𝑡𝑖 < 𝑝𝑖 ,

then 𝑝𝑖 − 𝑡𝑖 is the amount of idle processing time of discarded optional

sub-tasks and let 𝑠𝑖 = 𝑡𝑖 −𝑚𝑖 < 𝑜𝑖 is the amount of processing time of

absolutely discarded optional sub-task. If 𝑠𝑖 = 𝑜𝑖 or 𝑝𝑖 = 𝑡𝑖 , then the task 𝑇𝑖
𝑛𝑖

can be said that it is precisely scheduled.

Fig. 3.3: Basic workload model of the proposed method

The sub-tasks are performed by the corresponding steps based on the

concept of anytime algorithm as shown in Fig. 3.4 as an example.

Fig. 3.4: Process flow of N tasks

The processing time of each sub-task by the related steps is less than or

equal to the processing time of the whole task at final step. It is assumed that

these tasks are independent and performed by priority i.e., task 1 by its

corresponding sub-task is performed first as the priority work, then task 2 by its

corresponding sub-task and so on. The current computation at each step is

related to the previous step, i.e., each sub-task can be stopped at anytime with

the approximated result and then it can be resumed with the minimal overhead

time.

The returned result of the current sub-task is inputted to the next

sub-task for e.g., if the sub-task of task 1 is stopped at step 3, the approximated

result at step 3 of this task can be outputted or the output of task 1 at step 3 is

m1 𝑜1
𝑛1

i

𝑜1
𝑘+1

i
𝑜1
𝑘+2

i
m2 𝑜2

𝑛2

i

𝑜2
𝑘+1

i
𝑜2
𝑘+2

i
mN 𝑜𝑁

𝑛𝑁

i

𝑜𝑁
𝑘+1

i
𝑜𝑁
𝑘+2

i

Task 1 Task 2 Task N

m2, o2 m1, o1 mN, oN Schedule

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

30

applied to perform the computation of the sub-task of task 2, and so on. Thus,

the different intermediate (imprecise) result could be obtained at the

intermediate processing time. So, the amount of processing time of discarded

optional sub-tasks would be reduced and the imprecise overall result of all

tasks could be realized even though the quality of result is not perfect.

3.3.2 Scheduling Algorithm

Earliest Deadline First algorithm (EDF) [without priority task]

1. Input tact time (pre-run time) T, number of tasks and the deadline of each

task performed by steps.

2. Search the minimum deadline or (the earliest deadline first) of each sub-task

of task i which is less than or equal to T, and let it be T1, then search the next

minimum deadline which is ≤ (T – T1), and let it be T2 until no more

execution time left or insufficient execution time for any deadline left i.e., 0 ≤

TN ≤ (T – (T1 + T2 + … + TN-1)

3. If all or some of the tasks assigned by the related processing time, then first

schedule i.e., S1 is obtained.

4. If the system received the stop signal from the checking point, then output

the intermediate result.

5. Repeat step 2 to 4 until no more processing time left or all of the tasks are

assigned by related processing time.

3.3.3 Evaluation of the Overall Processing Result of Dependent Tasks

In this sub-section, how to evaluate the overall processing result of the

combination of dependent tasks is explained. A task is divided into many

sub-tasks that are performed by many steps. For example, a task is divided into

n sub-tasks performed by n steps, the precise or 100% result is obtained by

performing step n e.g., if the task is performed only step k, k < n, the

intermediate result can be obtained at step k of this task.

Let us consider a set of dependent tasks

 T = {𝑇𝑖
𝑛𝑖} , i = 1, 2, …, N

Where

ni = the steps of each tasks 𝑇1,𝑇2,… ,𝑇N respectively

f1, f2, …, fN = the executable functions 1, 2, …, N respectively

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

31

and,

 𝑥1
𝑛1 = f1(x) = the output 𝑥𝑖

𝑛1
 of task 𝑇1 at step n1 is evaluated over the

function f1 using input x

𝑥2
𝑛2 = f2(𝑥1

𝑛1) = the output 𝑥2
𝑛2

 of task 𝑇2 at step n2 which is evaluated

over the function f1 using input 𝑥1
𝑛1

𝑥𝑁
𝑛𝑁 = fN(𝑥𝑁−1

𝑛𝑁−1) = the output 𝑥𝑁
𝑛𝑁

 of task 𝑇𝑁 at step nN is evaluated

over the function f1 using input 𝑥𝑁−1
𝑛𝑁−1

In case of dependent tasks, the current result is evaluated by using the

previous result which is one of the concept of anytime algorithm, thus, the

overall processing result y can be realized by the composition of the functions

f1, f2, …, fN

i.e.,

 y = fN◦fN-1◦fN-2◦…fk◦fk-1◦…f2◦f1◦ x (3.1)

Where

 x = input

 y = output

If the system received the stop signal, the current intermediate result

can be obtained. The percentage of relative error is calculated by

 Percentage of relative error =
[the precise result –the approximated result]

the precise result
100 (3.2)

(1) Is the intermediate overall processing result acceptable or not?

It is necessary to examine that whether the intermediate result is

acceptable or not, so the necessary conditions that the minimum required steps

of each task for the acceptable result are determined as follows:

Suppose that

ki = minimum required steps that must be performed for the acceptable

results of task 𝑇𝑖 , 1 < ki < ni

and,

 𝑥1
𝑘1 = f1(x) = the output 𝑥𝑖

𝑘1
 of task 𝑇1 at step k1 is evaluated over the

function f1 using input x

𝑥2
𝑘2 = f2(𝑥1

𝑘1) = the output 𝑥2
𝑘2

 of task 𝑇2 at step k2 which is evaluated

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

32

over the function f1 using input 𝑥1
𝑘1

𝑥𝑁
𝑘𝑁 = fN(𝑥𝑁−1

𝑘𝑁−1) = the output 𝑥𝑁
𝑘𝑁

 of task 𝑇𝑁 at step kN is evaluated over

the function f1 using input 𝑥𝑁−1
𝑘𝑁−1

Thus, the acceptable overall result at intermediate step k is determined

by

y = fk◦fk-1◦…f2◦f1◦ x the acceptable result of task 𝑇𝑖 at each step ki, 1 < ki <

ni , and 1 ≤ i < N

(2) How does the quality of the overall processing result become?

In this approach, the result of the previous function is applied to

evaluate the current step, so the quality of the current result becomes gradually

improve than the previous result that is satisfied one of the properties of

anytime algorithm.

From the viewpoint of probability theory, the evaluation of the overall

processing result is described as follows:

Let

Sample space S: the set of all possible attention points at final step, thus,

 no. of all resultant points in S = |S|

and, its discrete random variable X can be defined as

X: no. of resultant attention points at each step

Therefore,

the elements of X are x1, x2, …, xn for the steps 1, 2, …, n1 and, its values

are
1

...,,, 21 nxxx

i.e., 1x = no. of resultant attention points at step 1

2x = no. of resultant attention points at step 2, and so on.

The execution of the current step is used the result of the previous step,

i.e., the result of step 1 is used in step 2, and the result of step 2 is used in step 3

and so on. So, the result will be gradually improved at each step and the

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

33

accuracy of result of a task at each step is generally considered by Cumulative

Distribution Function (CDF), F(xi).

 Intermediate result

at current step 𝑖
= 𝐹 𝑥𝑖 = no. of approximated results at current step

no. of precise results at final step
 (3.3)

i.e.,

)(x)x(X)(x
|S|

x
stepatresultthe 111

1 FPp1

)(x)x(X)(x)(x
|S|

x

|S|

x
stepatresultthe 2221

21 FPpp2

)(x)x(X)(x...)(x)(x

|S|

x
.....

|S|

x

|S|

x
stepatresultthe

1n1n1n21

1n21
1

FPppp

n

In general,

(3.4)

Where

)...)()(21 1n(xF xFxF

As mentioned above, the quality of result becomes increasingly at each

step and it is a monotonically increasing function that can be defined at each

step of the task. Therefore, its performance curve can be expressed as shown in

Fig. 3.5 as an example. It expresses the quality of result of a task at each step i

by the performance curve which improves as the processing time increases.

1

1

1

...,2,1,),(x)x(X
n

i |S|
ix

stepatresultthe niiFiPi

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

34

Fig. 3.5: Performance curves of the quality of result of the task

3.3.4 Determination of Quality of Overall Processing Result

In order to determine the quality of overall processing result of the combination

of many tasks, unequal chance i.e., non-uniformly distribution is considered.

For the combination of many tasks, the quality of overall processing

result of tasks 𝑇1,𝑇2,… ,𝑇N with respect to the steps n1, n2, …, nN respectively

would be unequally or non-uniformly distributed by

 𝑄1 =

𝐹1 𝑥1

𝐹1 𝑥2
⋮

𝐹1 𝑥𝑛1

 𝑄2 =

𝐹2 𝑥1

𝐹2 𝑥2
⋮

𝐹2 𝑥𝑛2

 ⋮

 𝑄𝑁 =

𝐹𝑁 𝑥1

𝐹𝑁 𝑥2
⋮

𝐹𝑁 𝑥𝑁

In case of the dependent tasks, i.e., the result of one task affects the

result of a next task. Therefore, the overall quality (performance) of the

combination of many tasks can be defined by

 Q = Q1◦Q2◦…◦QN (3.5)

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

35

3.3.5 Analysis of Quality of the Overall Processing Result

Algorithm for the estimation of the overall processing result

(1) Determine the condition that minimum required step number of task 1, 2, …,

N and let them be k1, k2, …, kN.

(2) Select the executable function f1 with input value x and the step no. of task 1,

i.e., c1 which must be satisfied the condition that c1 ≥ k1.

(3) Execute the function f1 with input value x and c1, i.e., f1(x, c1) and let the result

be y1.

(4) Select the next executable function f2 with input value y1 and the step no. of

the current task, i.e., c2 which must be satisfied the condition that c2 ≥ k2.

(5) Execute the function f2 with input value or the previous result y1 and c2, i.e.,

f2(y1, c2) and let the result be y2.

(6) Repeat the step 4 until the result yN would be obtained.

(7) Evaluate the overall processing result: y = yN◦yN-1◦…◦y2◦y1◦x

(8) Calculate the quality of the overall processing result by equation (5).

Dependent case

In this case, if the system is composed of the combination of many tasks

that are inter-related each other in a particular time constraint. The calculation

of current result for a task is depend on the result of previous task i.e.,

calculation of task 2 is based on the result of task 1, and calculation of task 3 is

based on the result of task 2, and so on. Then, the total performance (combined

quality) can be evaluated by using the conditional performance profile (CPP)

that is described in chapter 2. Formulation of quality functions for dependent

case is described as follows:

Let

 𝑇1,𝑇2,… ,𝑇N = task 1, 2, 3, …, N respectively

 Q1, Q2, Q3, …, QN= quality of task 1, 2, 3, …, N respectively

 t1, t2, t3, …, tN = total required time for each tasks 𝑇1,𝑇2,… ,𝑇N respectively

 The total performance Q of combination of N tasks is

Q = QN{QN – 1, ... [Q2 (Q1 (Q0, t0), t1), t2], ..., tN – 1}

Here,

 Q0 and t0 means that the initial quality 0 and initial starting time 0 at

step 0

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

36

 Q1(Q0, t0) means that the quality of task 1 has input quality Q0 and

processing time t0

 Q2(Q1(Q0, t0), t1) means that the quality of task 2 has input quality Q1 and

processing time t1 and so on.

 In this case, the total quality Q might be less than or equal to the

maximum quality i.e., 1.

Independence case

In order to obtain the maximum performance at any time, by choosing

the priority task that has predefined executing time with high quality result if it

meets the current processing time. If the time is not enough i.e., its execution

time is greater than current execution time, then choose the suitable processing

time with appropriate quality of result to avoid the huge amount of rest time

and so on. Formulation of quality functions for independent case is described as

follows:

Suppose that when the system is composed of 4 tasks and the total

processing time is restricted, then the maximum performance in a restricted

time can be obtained as described in the following.

Let

 T = Restricted time

 𝑇1,𝑇2,… ,𝑇4 = task 1, 2, …, 4 respectively

 q1i = quality of task 𝑇1 at step i, where i = 1, 2, …, a

 q2j = quality of task 𝑇2 at step j, where j = 1, 2, …, b

 q3k = quality of task 𝑇3 at step k, where k = 1, 2, …, c

 q4l = quality of task 𝑇4 at step l, where l = 1, 2, …, d

 t1, t2, t3, t4 = total required time for task 𝑇1,𝑇2,𝑇3 and 𝑇4respectively

 Q = maximum performance of above 4 tasks

In order to optimize the overall performance in a restricted time, the

constructed optimization model by the linear programming model is

)6.3(0.4/))()()()((44

0.0

332211∑ tqtqtqtqQMax

T

t

 Subject to

 t11 + t12 + t13 + … + t1a ≤ t1

 t21 + t22 + t23 + … + t2b ≤ t2

 t31 + t32 + t33 + … + t3c ≤ t3

 t41 + t42 + t43 + … + t4d ≤ t4

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

37

 and

 t1 + t2 + t3 + t4 ≤ T

 t1, t2, t3, t4 ≥ 0

Figure 3.6 shows one of the experimental results of the proposed

scheduling mechanism. Here, we can easily see that the assignment of

processing time is effectively distributed with less idle time. The performance

curve shown in Fig. 3.7 represents the overall performance of 4 tasks and it is

satisfies the definition of performance profile. Hence, the scheduling result

realizes the optimal performance. Furthermore, the proposed method can

reduce the idle/rest time.

Fig. 3.6: Scheduling result for 4 tasks

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A
s
s
ig

n
m

e
n

t
o
f

ti
m

e

Tact time (ms)

Scheduling
t1
t2
t3
t4

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

38

Fig. 3.7: Overall performance of 4 tasks

Table 3.2 shows the experimental data of proposed scheduling mechanism.

Table 3.2: Scheduling result for independent case

Processing

time

(s)

Assignment of tasks by processing time Total

Quality

Q

Rest/Idle

time

(s)
t1 q1 t2 q2 t3 q3 t4 q4

0 0 0 0 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0 0 0 0.1

0.2 0 0 0 0 0 0 0 0 0 0.2

0.3 0 0 0 0 0 0 0 0 0 0.3

| | | | | | | | | | |

| | | | | | | | | | |

8.1 1.2 0.23 0 0 0 0 6.87 0.86 0.2735 0.03

8.2 1.2 0.23 0 0 0 0 6.98 0.93 0.291 0.02

| | | | | | | | | | |

| | | | | | | | | | |

17 2.2 1 0 0 7.7 0.956 7.03 1 0.739 0.07

17.1 2.3 1 0 0 7.7 0.956 7.03 1 0.739 0.07

17.2 2.4 1 0 0 7.7 0.956 7.03 1 0.739 0.07

| | | | | | | | | | |

| | | | | | | | | | |

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

Q
u

a
li

ty

Time

Performance curve

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

39

20.3 2.4 1 2.34 1 7.7 0.956 7.03 1 0.989 0.83

20.4 2.4 1 2.34 1 7.7 0.956 7.03 1 0.989 0.93

20.5 2.4 1 2.34 1 7.7 0.956 7.03 1 0.989 1.03

20.6 2.4 1 2.34 1 7.7 0.956 7.03 1 0.989 1.13

20.7 2.4 1 2.34 1 7.7 0.956 7.03 1 0.989 1.23

| | | | | | | | | | |

| | | | | | | | | | |

23.6 1.5 0.26 1.68 0.213 13.3 1 7.03 1 0.61725 0.09

23.7 1.2 0.23 2.11 0.547 13.3 1 7.03 1 0.69525 0.06

25.5 2.4 1 2.34 1 13.3 1 7.03 1 1 0.43

25.6 2.4 1 2.34 1 13.3 1 7.03 1 1 0.53

25.7 2.4 1 2.34 1 13.3 1 7.03 1 1 0.63

25.8 2.4 1 2.34 1 13.3 1 7.03 1 1 0.73

25.9 2.4 1 2.34 1 13.3 1 7.03 1 1 0.83

26 2.4 1 2.34 1 13.3 1 7.03 1 1 0.93

3.3.6 Discussion

This section describes the comparison of the proposed scheduling method and

the conventional scheduling method by imprecise computation.

Table 3.3: Comparison of scheduling result for independent case

 Milestone Sieve
Multiple

version

Proposed

method

Processing time Less
Reduce the

overhead time

Cost

Overhead in

recording

intermediate

result

Less

Overhead

to store

multiple

version

Overhead in

recording

intermediate

result

Higher

scheduling

Higher

scheduling

overhead

Overhead Overhead

Intermediate

result
1 1 Many Range answer

Precise result 1 1 1 1

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

40

3.4 Summary

This chapter explained the problems in real time system and their approaches,

and the basic idea or solving method for scheduling based on imprecise

computation and anytime algorithm. First, the proposed scheduling mechanism

under time constraint is described for dependent and independent case, its

basic workload model and algorithm. Then, characteristic of scheduling is

shown in table. After that, evaluation of overall processing result for the

combination of many tasks is described.

The quality function to optimize the overall performance under the

processing time constraint for the dependent, independent and both cases are

constructed based on the concept of linear programming and imprecise

computation. The experimental result is shown by graphical and tabular

representations. The performance curve of time and quality graph shows that

the overall processing result is gradually improved as the processing time

increases that is satisfied the definition of performance profile. Finally, the

comparison of proposed scheduling and the conventional imprecise scheduling

method is described by table.

References

[1] M. Boddy and T. Dean. ‚Decision-theoretic deliberation scheduling for problem solving

in time-constrained environments”, Artificial Intelligence, 67(2):245--286, 1994.

[2] Thomas Dean, ‚Deliberation Scheduling for Time-Critical Scheduling in Stochastic

Domains‛

[3] S. Zilberstein, ‚Monitoring Anytime Algorithms‛

[4] A. Garvey, V. Lesser. ‚Design-to-Time Real-Time Scheduling”, IEEE Transactions on

Systems, Man and Cybernetics, 1993

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

[5] Garvey, Alan and Victor Lesser, ‚Design-to-time Scheduling and Anytime Algorithms‛,

SIGART Bulletin, 7 (2):16--19 (1996).

http://citeseer.comp.nus.edu.sg/85186.html

[6] Dean, Thomas and Boddy, Mark, ‚An Analysis of Time_Dependent Planning‛,

Proceedings Anytime Algorithm AI-88, St. Paul, Minnesota I, 49–54, 1988.

[7] Hasegawa, H. Kubota and J. Toriwaki, ‚Automated construction of image processing

procedures by sample figure presentation‛, Proc. of 8th Int’l Conference on Pattern

Recognition (ICPR1986), Vol. 1, pp.586-588 (Oct.1986).

[8] J.-Y. Chung, J.W.-S.Liu, and K.-J. Lin, ‚Scheduling Periodic Jobs that Allow Imprecise

Results‛, IEEE Trans. Computers, vol. 19, no. 9, pp. 1,156–1,173, Sept. 1990

[9] W.-K. Shih, J.W.-S. Liu, and J.-Y. Chung, ‚Algorithms for Scheduling Imprecise

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

CHAPTER 3-SCHEDULING WITH RESOURCE CONSTRAINT

41

Computations to Minimize Total Error‚, SIAM J. Computing, vol. 20, no. 3, July 1991.

[10] W.-K. Shih and J.W.-S. Liu, ‚On-Line Scheduling of Imprecise Computations to

Minimize Error‛, Proc. 13th Real-Time Systems Symp., IEEE, Dec. 1992.

[11] W.-K. Shih and J.W.-S. Liu, ‚Algorithms for Scheduling Imprecise Computations with

Timing Constraints to Minimize Maximum Error‛, IEEE Trans. Computers., vol. 44,

no.3, pp. 466-471, Mar 1995.

42

Chapter 4

Anytime Algorithmic Image Processing

4.1 Introduction

In real-time image/video processing system, if we seriously consider the less

processing time in a particular task, the processing quality would becomes

sacrifice and conversely, if we adhere to the processing quality too much, the

processing time might needed much time.

The purpose of real-time image processing system involves with the

improvement of the quality of video (image sequence) by enhancing the image

in pre-processing like noise reduction. Furthermore, many imaging applications

are time critical and are computationally intensive. For example, in image

transmission system, the digital images require huge amounts of space for

storage and large bandwidths before the transmission of image, so it is

necessary to process the images in pre-processing such as filtering and

enhancement.

The outputs are required not only the perfect but also the timely

imperfect results with deadline satisfaction. Moreover, the quality of image

processing is usually evaluated by high extraction rate or low error rate. It is

easy and clear to evaluate the single image processing task, but if the system is

composed of many tasks, it would becomes difficult to evaluate the combined

processing result due to the results of image processing vary according to the

combination of the methods and tasks. For instance, in image/video tracking or

image transmission which is necessary to realize the intermediate result i.e., to

achieve the better resolution with data transmissions and computations as low

as possible, at intermediate processing time.

There are many methods for image/video processing results reported in

the real-time image processing from the different viewpoints such as hardware

platform i.e., FPGAs, DSP (Digital Signal Processors), GPU, Hybrid and PC

based systems, and software platform i.e., pipeline, parallel processing and

algorithm.

In real time image processing system, a task can be divided into small

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

43

sub-tasks in order to perform the combination of tasks with some restrictions

like processing time and memory usage by giving the partial overall result. In

order to obtain a result at midway processing time and the overall result of the

combination of many tasks at optimal time, this chapter describes how to

modify some of the conventional image processing (CIP) methods to anytime

algorithmic image processing, hereafter AAIP methods, step by step and it is

satisfied by all of the properties of anytime algorithm. Thus, the rest of this

chapter describes as follows:

First of all, the conventional image processing operations in low,

intermediate, and high level, and its existing methods/techniques are analyzed.

Then, categorize the conventional image processing methods from the

viewpoint of anytime algorithm. After that, how to modify the conventional

image processing methods to AAIP is explained for each method. Finally, the

experimental results of AAIP methods and its related performance curves are

expressed.

The general concept of digital image processing is briefly explained as

follows:

Digital image processing is one of the interested subjects in computer science. It

is to analyse and manipulate digital images with a computer. Most of the digital image

processing methods have been proposed and there have been almost all of them are going

to emphasize on image quality for visualization, compression of image size for web

application, and processing time for the image retrieval system etc. It is especially for

human visualization like enhancement, restoration etc. by analyzing with computer for

the specific purposes such as documents analysis, textures analysis, biometrics, object

recognition and so on. It has generally three steps:

1. Import an image with a scanner or a digital camera.

2. Manipulate and analyse the image in some ways.

3. Output the image.

The result may be an image or a report of information based on analysis

of the image. In order to be able to produce the useful result, there are many

different methods and techniques which are dealing with three types of image

processing level such as low level processing, intermediate level processing,

and high level processing.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

44

(1) Low level processing

Low level processing involves primitive operations such as noise

reduction, image sharpening, brightness, contrast enhancement, and

thresholding etc. In this level, it is characterised by the fact that both its inputs

and outputs are images. It is concerned with work at the binary image, typically

creating a second "better" image which depends on the first processed image by

changing the representation of the image by removing unwanted data e.g.,

noise, and enhancing wanted data e.g., brightness using filters, operators etc.

(2) Intermediate level processing

To process an image in this level involves the tasks like segmentation

that partitioning an image into regions or objects and classification or

recognition of individual objects for object recognition. It is characterized by the

fact that its inputs generally are images, but its outputs are image attributes or

information that are extracted from those images such as edges, contours, and

the identity of individual objects. The operations in this level are edge detection,

labelling, morphological processing, segmentation, template matching,

boundary detection, and so on.

(3) High level processing

This level includes ‚making sense‛ of an ensemble of recognized objects,

as in image analysis, and performing the cognitive functions normally

associated with computer vision. The operations in this level are feature

extraction, coding, image reconstruction, image understanding etc. High level

preprocessing interfaces the image to some knowledge base. This associates

shapes discovered during previous level of processing with known shapes of

real objects. The results from the algorithms at this level are passed on to non

image procedures, which make decisions about actions following from the

analysis of the image.

4.2 Anytime Algorithmic Image Processing

This section describes operations and methods that are fundamental to digital

image processing. There are various image processing operations and methods

depending on the specialized purposes for the specific applications. So, it is

necessary to apply the appropriate operators and suitable methods in which

operations in order to achieve the goal. These operations are based on the image

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

45

histogram, simple mathematics, convolution, and mathematical morphology

and so on. Generally, image processing operations can be roughly divided into

the following categories:

 Image enhancement and restoration

 Image compression/data compression

 Measurement extraction

 Coding

 Feature detection

 Morphological operation

 Object description and classification

etc.

And, the typical image processing methods are

 Filter type

 Histogram based type

 Condition type

 Morphological type

 Gradient type

etc.

The conversion of CIP method to AAIP method, anytime algorithm is

used as a basic tool. It is an algorithm which is different from the traditional

algorithm and it is satisfied the features that the quality of result can be

improved when the processing time increases and the result can be produced at

anytime [3], [4], [5], [6]. Hence, anytime algorithmic form of an image

processing task in a system can be represented as shown in Fig. 4.1.

Fig. 4.1: Anytime algorithmic form of an image processing task

 More Less

Output Input Task can be performed partially

 Exact Approximate Possible

Computation Time

 Low High

Quality of Results

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

46

Therefore, it is necessary to analyze what kind of image processing

tasks can be divided into sub-tasks. According to the definition of anytime

algorithm and its properties, presently, the following image processing tasks

with discrete type could be divided into sub-tasks in order to obtain the

intermediate result at any time. These are

(1) Filter type

(2) Gradient type

(3) Morphological type, and

(4) Condition type

Hence, the following sub-sections explain how to convert conventional

image processing methods to anytime algorithmic form by anytime algorithm

in order to provide the better solution of time-quality trade-off problem from

the viewpoint of image quality and/or processing time. Modification of some of

spatial filtering method like averaging by Mean filter for noise reduction and

Gradient by Prewitt filter for edge detection by the concept of anytime algorithm

are found in [8], [9].

4.2.1 AA Spatial Filtering

The fundamental process in digital image processing is the image enhancement

which is applied in every field for e.g., medical image analysis, and analysis of

images from satellites like weather map where the images are required to be

understood and analyzed. Moreover, there are large amount of data usage to

process an image in pre-processing steps rather than that of intermediate and

high level processing in digital image processing. Spatial filtering method is

widely used in image processing, either as a preprocessing step or as a mean for

gathering some interesting features such as edge, boundary, noise in an image

for other image processing processes like object detection, and video tracking in

image analysis.

Spatial filtering operation by discrete convolution filter is widely used

in image processing, either as a preprocessing step or as a mean for gathering

some interesting features such as edge, boundary, and noise from the input raw

image. There are many filtering operations according to the type of the

operators, their usages and the purposes. Some filtering methods are spatial

filtering, linear filtering, non-linear filtering and so on. In this approach, the

Mean filter, Gaussian filter, and Gradient filter are considered in particular. For

instance, Prewitt operator can be used for the edge detection purpose and

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

47

simple averaging method can be applied for noise reduction etc. These discrete

convolution filters can be divided into different types of filter according to the

concept of anytime algorithm. This concept is useful in implementing anytime

function in order to perform the sub-tasks and output the partial result in

intermediate processing time for the linear spatial filtering such as low pass

filtering and high pass filtering.

The basic idea of how to apply anytime algorithm to the spatial filtering

method by convolution filter is by dividing the filter into many different types

of filter, then the task is performed by many steps using different types of filter.

Here, the step would depend on the size of filter mask and the operator used,

for e.g., if the mask size is 3x3, the step would be at most 9, if it is 5x5 mask the

step would be at most 25 with the specific operators and operations.

Conventional linear spatial filtering

In the conventional spatial filtering, there are two types: linear and

non-linear. Linear filters such as mean and Gaussian for smoothing and Gradient

operators such as Sobel, and Prewitt filters for edge detection and basic hi-pass

spatial filter for sharpening are considered as examples in this proposed

method.

Generally, the response R of an m x n mask at any point (x, y) in an

image, the linear spatial filtering is considered by the following expression:

 R = w1f1+ w2f2+…+ wmnfmn= 𝑤𝑖𝑓𝑖
𝑚𝑛
𝑖=1 (4.1)

where the w’s are the coefficients of mask, the f’s are the values of the

image gray levels corresponding to the mask coefficients, and mn is the total

number of coefficients in the mask. In general, linear filtering of an image f of

size MxN with a filter mask of size mxn is given by the expression:

a

ai

b

bj

jyixfjiwyxfyxwyxg),(),(),(),(),(

(4.2)

Where

f = input image

g = output image

m = 2a+1

n = 2b+1

w = the elements of mxn mask

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

48

and

a and b are non-negative integers.

Proposed linear spatial filtering

Fig. 4.2: 3x3 filter mask

For 3 x 3 filter mask as shown in Fig. 4.2, the response R at any point (x,

y) in the image is given by

R = w1f1+ w2f2+…+ w9f9= 𝑤𝑖𝑓𝑖
9
𝑖=1 (4.3)

In this spatial filtering method, 3x3 filter mask is divided into 8

sub-masks as shown in Fig. 4.3 by increasing the corresponding elements in

each sub-mask. Here, many different patterns (i.e., 40320=8!) of divided

sub-masks like HLAC features are constructed. Among 40320 patterns, 20738

different results with different patterns are obtained after removing the patterns

with same results when the image or filter mask is rotated to 180 degree.

Fig. 4.3: Divided sub-masks of 3x3 filter mask

Figure 4.3 is one of the patterns with the better result among many

other different patterns according to the experiments. As shown in this figure,

sub-mask 1 has two elements and the first element is started from center as

reference pixel in HLAC features and the other element is the lower element. In

sub-mask 2, it has three elements defined by the elements of sub-mask 1 and

added by the upper element. Sub-mask 3 is defined by the elements of

sub-mask 2, and added by the right element, and then the upper left, the upper

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

49

right and so on in the next sub-mask up to sub-mask 8.

Then, the operation is performed by divided sub-masks using 8 steps.

So, the response R at any point (x, y) in the image can be performed by the

following 8 steps:

Step-1 : R1 = w5f5+ w8f8

Step-2 : R2 = R1 + w2f2

Step-3 : R3 = R2 + w6f6

Step-4 : R4 = R3 + w4f4

Step-5 : R5 = R4 + w1f1

Step-6 : R6 = R5 + w3f3

Step-7 : R7 = R6 + w7f7

Step-8 : R8 = R7 + w9f9

In each step, the previous result is used to perform the calculation of

current steps in order to perform the task efficiently according to the properties

of anytime algorithm. Thus, 8 different intermediate responses R’s can be

obtained at each step with the related processing time.

This proposed method is applied to averaging (smoothing) task by

Gaussian filter and Mean filter, and sharpening task by basic hi-pass spatial filter

using the above patterns and edge detection task by Sobel filter using other

pattern which will be explained in the later part.

4.2.1.1 AA Low pass filtering

(1) Smoothing by Gaussian filter

In anytime algorithmic linear spatial filtering, smoothing task by using

Gaussian 3x3 mask is done by applying divided sub-masks as shown in Fig. 4.4

Figure 4.4 shows that how to perform anytime algorithmic smoothing method

by using Gaussian 3x3 mask. In particular, Gaussian 3x3 filter mask is applied as

an example.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

50

(a)

(b)

Fig. 4.4: (a) Gaussian 3x3 mask (b) Divided sub-masks of Gaussian

In general, the output image is evaluated by anytime low pass spatial

function which is modified from (4.2) for anytime algorithmic low pass filtering

and is given by

)4.4(]),(),([

),(

),(
+),(=),(111

1

1
1 jigyxf

yxw

yxw
jigjig kkk

l

l

k
kk

Where

k = 1, 2, …, 8

i = 1, 2, ..., W – 1

j = 1, 2, ..., H – 1

fk (x, y) = input image

gk (i, j) = current output

gk-1 (i, j) = previous output

W and H = image’s width and height

wk(x, y) = the elements of 3x3 mask

here,

 wk are positive for low pass filtering

(2) Smoothing by mean filter

AA noise reduction by simple averaging operation using 3 x 3 Mean

filter mask could be modified by weighting each pixel value step by step. In the

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

51

smoothing operator, there are 8 different results whose quality of result

gradually improves as the computation time increases in the way of computing

because there is 8 times summation at most. So, it has 8 steps to perform its task

by using the concept of anytime algorithm. For instance, an anytime algorithmic

smoothing operator could be realized by weighting each pixel in another

pattern as shown in Fig. 4.5.

In AAIP, by replacing each pixel value with weighted sum (average

value) of its neighboring pixel including itself step by step, the weighted values

are 1/2, 1/3, …, and 1/9. In each step, the operation is performed by each

divided filter, thus, the qualities of results gradually become better as

processing time increases.

(a) (b)

Fig. 4.5: (a) Mean 3x3 filter (b) Divided sub-masks of Mean filter

4.2.1.2 AA High pass filtering

Sharpening by basic hi-pass spatial filter

In anytime algorithmic linear spatial filtering, sharpening task by using

basic hi-pass spatial 3x3 mask is done by the divided sub-masks as shown in Fig.

4.6. Figure 4.6 (a) is the Basic hi-pass spatial 3x3 mask and (b) is the divided

sub-masks of Basic hi-pass spatial filter.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

52

(a)

(b)

Fig. 4.6: (a) Basic hi-pass spatial 3x3 mask (b) Divided sub-masks of basic hi-pass spatial filter

The output image is evaluated by anytime high pass spatial function for

anytime algorithmic high pass filtering and is given by

)5.4(),(),(+),(=),(01 yxfyxcwgjigjig kkkk

Where

k = 1, 2, …, 8

i = 1, 2, ..., W – 1

j = 1, 2, ..., H – 1

fk (x, y) = input image

gk (i, j) = current output

gk-1 (i, j) = previous output

g0 = c wcentre (x, y) fcentre (x, y), c = constant

W and H = image’s width and height
wk(x, y) = the elements of 3x3 mask,

Here,
wk are negative except from centre element wcentre (x, y) for high pass

filtering

In general, the output sharpened image is obtained by

 𝐺 𝑥,𝑦 = 𝑓 𝑥, 𝑦 + 𝑔𝑘(𝑖, 𝑗) (4.6)

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

53

Where

 𝐺 𝑥,𝑦 = output image

 𝑓 𝑥,𝑦 = input image

 𝑔𝑘(𝑖, 𝑗) = filtered image

The AA filtering method as mentioned above, the following facts that

are satisfied all of the properties of anytime algorithm. That is, the result can be

defined exactly at every step, thus, it is satisfied the properties (1), (2), and (3).

In addition, step 1 result is applied in the evaluation of step 2, then step 2 result

is applied in step 3 and so on, in order to obtain the result at every step that is

satisfied by the property (4) and (5). Moreover, if the algorithm is stopped for

e.g., at step–3, then the partial result of this task can obtain for this step and

started again at current step, so, it is satisfied the properties (6) and (7). Hence,

this method can apply to the typical image processing operations such as

smoothing, noise reduction, and sharpening using the appropriate filters under

the condition that the processing time is restricted.

4.2.2 AA Gradient method

In anytime algorithmic gradient method, edge detection task by using 3x3 mask

is done by divided sub-masks as shown in Fig. 4.7. Figure 4.7 shows how to

perform anytime algorithmic edge detection method by using 3x3 mask. For

example, in the edge detection operator using 3 x 3 mask, there are too many

combinations of weighting. This figure shows an example of the mask and their

weights for each pixel. This scheme outputs 6 steps of result whose qualities

gradually become better. In general, the output image is evaluated by anytime

spatial function for Gradient method which is given by

 𝐺𝑌 = 𝐺𝑌−1 + 𝑇 𝑓𝑌 𝑥,𝑦 (4.7)

 𝐺𝑋 = 𝐺𝑋−1 + 𝑇 𝑓𝑋 𝑥,𝑦 (4.8)

 𝐺 = 𝐺𝑋 + 𝐺𝑌 (4.9)

Where

 𝑓 𝑥,𝑦 = input image

G = output image

GX = gradient by horizontal

GY = gradient by vertical

T = transformation on 𝑓 𝑥, 𝑦

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

54

(1) Edge detection by Prewitt filter

In anytime algorithmic gradient method, edge detection task by using

Prewitt 3x3 mask is done by divided sub-masks as shown in Fig. 4.7. Figure 4.7

(a) is the Prewitt 3x3 mask and (b) is the divided sub-masks of Prewitt 3x3 mask.

(a)

(b)

Fig. 4.7: (a) Prewitt 3x3 mask (b) Divided sub-masks of Prewitt

(2) Edge detection by Sobel filter

In anytime algorithmic gradient method, edge detection task by using

Sobel 3x3 mask is done by divided sub-masks as shown in Fig. 4.8. Figure 4.8 (a)

is the Sobel 3x3 mask and (b) is the divided sub-masks of Sobel 3x3 mask.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

55

(a) (b)

Fig. 4.8: (a) Sobel 3x3 mask (b) Divided sub-masks of Sobel

The AA Gradient type method as mentioned above, the following facts

that are satisfied all of the properties of anytime algorithm. That is, the result

can be defined exactly at every step, thus, it is satisfied the properties (1), (2),

and (3). Step 1 result is applied in the evaluation of step 2, then, step 2 result is

applied in step 3 and so on, in order to obtain the result at every step that is

satisfied by the property (4) and (5). Moreover, if the algorithm is stopped for

e.g., at step–3, then the partial result of this task can obtain for this step and

started again at current step, so, it is satisfied the properties (6) and (7). Hence,

this method can apply to the typical image processing operations such as point

detection, line detection, and edge detection using the appropriate filters under

the condition that the processing time is restricted.

4.2.3 AA Morphological Processing

Morphological method is a technique for the analysis and processing of

geometrical structures and features based on set theory. It is a useful theory to

extract the regional shape such as boundaries, skeletons, and convex hull,

especially applied in image preprocessing [1]. It is used the structuring

elements to process the image for the morphological operation including

erosion, dilation, opening and closing etc. It is one of the principal operations to

the applications of extracting the image components or features that are useful

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

56

in the representation and description of object shape e.g., boundary extraction. I

consider that it can be applied by anytime algorithm tool by dividing the

structuring element into sub-structuring element like anytime algorithmic

spatial filtering methods that already proposed in [9].

In this section, how to modify the anytime algorithmic morphological

method by using anytime algorithm is explained. Structuring element is the

probe in morphological operations like dilation, erosion, opening, and closing.

In this proposed method, the structuring element is divided into

sub-structuring element as shown in the Fig.4.9. Figure 4.9(a) is the 3x3

structuring element and (b) is the divided sub-structuring elements B1 to B8 of

3x3 structuring element.

(a)

(b)

Fig. 4.9: (a) 3x3 structuring element (b) its sub-structuring elements

These sub-structuring elements are used into morphological erosion

operation in anytime algorithmic form and its algorithm is described as follows:

Anytime algorithmic morphological erosion

Algorithm 1: Erosion by different patterns of sub-structuring elements

Input – binary image A and sub-structuring elements B1 to B8

Output – eroded image

Step-1: Perform the erosion operation using the input image A with structuring

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

57

element B1, i.e., A Ө B1 by using the first one of different patterns of

structuring element shown in Fig.4.9, then output the eroded image i.e.,

A1

Step-2: Perform the erosion operation using the previous output image A1

obtained from step-1 as input image with structuring element B2, here

the element used in B2 is the added element only. Then output the

eroded image.

Step-3: Repeat step-2 with corresponding structuring elements until the output

eroded image A7 as input image with structuring element B8

Step-4: Output the final eroded image A8.

Here are the correspondence operations and its output image A1 to A8 at

each step.

A1 = A Ө B1

A 2 = A 1 Ө B2

A 3 = A 2 Ө B3

A 4 = A 3 Ө B4

A 5 = A 4 Ө B5

A 6 = A 5 Ө B6

A 7 = A 6 Ө B7

A 8 = A 7 Ө B8

So, the final output of the combination of these operations can be

evaluated in the mathematical form as follows:

 A 8 = (A 7 (A 6 …(A 1(A Ө B1)) …Ө B7) Ө B8) (4.10)

Note: Ө = erosion symbol

The AA morphological type method as mentioned above, the following

facts that are satisfied all of the properties of anytime algorithm. That is, the

result can be defined exactly at every step, thus, it is satisfied the properties (1),

(2), and (3). In addition, step 1 result is applied in the evaluation of step 2, then

the step 2 result is applied in step 3 and so on, in order to obtain the result at

every step that is satisfied by the property (4) and (5). Moreover, if the

algorithm is stopped for e.g., at step–3, then the partial result of this task can

obtain for this step and started again at current step, so, it is satisfied the

properties (6) and (7). This method can apply to the other morphological image

processing operations such as dilation, opening, and closing using the

appropriate structuring elements under the condition that the processing time

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

58

is restricted.

4.2.4 AA Conditional Processing

Some of the properties of anytime algorithm resemble the properties of iterative

method. That is why, anytime algorithm could be applied to this condition type

method. If the operation is performed by using many conditions such as

morphological operations that have iterative process like thinning. By dividing

the conditions into steps according to the properties of anytime algorithm, for

e.g., if the method has n conditions i.e.,)...21(ncondition , then n conditions

are divided into many conditions, and the step 1 is performed by)1(condition ,

step 2 by)2(condition , and so on as shown in Fig. 4.10. Thus, n different results

could be obtained in the intermediate processing time.

Fig. 4.10: Divided sub-conditions

Even though there is no standard for the quality of image processing

result, how to modify some of the image processing methods like filter type,

gradient type, morphological type, and condition type into anytime algorithmic

forms are described as mentioned above from the viewpoint of image

processing’s quality and/or processing time according to the concept and

properties of anytime algorithm.

The AA condition type method as mentioned above, the following facts

that are satisfied all of the properties of anytime algorithm. That is, the result

can be defined exactly at every step from 1 to N, so, it is satisfied the properties

(1), (2), and (3). The result at step 1 is applied in the evaluation of step 2, then

the result at step 2 is applied in step 3 and so on until step N has been reached,

in order to obtain the result at every step that is satisfied by the property (4) and

(5). In addition, if the algorithm is stopped for e.g., at step–3, then the partial

result can be obtained for this step and started again at current step, so, it is

satisfied the properties (6) and (7). Therefore, anytime algorithm can be applied

)(...)2()1(ncondcondcond

)1(cond

)2()1(condcond
)(...)2()1(ncondcondcond

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

59

to the morphological operations by using AA condition type methods to other

morphological operations such as thinning, dilation, erosion, opening, closing

and pruning.

4.3 Experimental Results

4.3.1 AA Noise Reduction

For anytime noise reduction operation, the simple averaging operator is

converted to anytime algorithmic form and the noise reduction operation is

performed by many steps using these sub-masks satisfying the condition that

the sum of all entry elements in the filter must be 1. An anytime algorithmic

simple averaging process using 3 x 3 mask could be realized by weighting each

pixel as shown in Fig. 4.11. In the averaging filter, there are 8 different results in

the way of computing because it has at most 8 times summation. In each step,

the quality of result gradually becomes better as processing time increases.

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Fig. 4.11: Divided anytime simple averaging step

Anytime simple averaging step

Step 1: sum = f(x, y) + f(x+1, y)

Step 2: sum = f(x, y) + f(x+1, y) + f(x+1, y–1)

Step 3: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1)

Step 4: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1) + f(x–1, y–1)

Step 5: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1) + f(x–1, y–1) + f(x–1, y)

Step 6: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1) + f(x–1, y–1) +

f(x–1, y) + f(x–1, y+1)

Step 7: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1) + f(x–1, y–1) +

f(x–1, y) + f(x–1, y+1)+f(x, y+1)

Step 8: sum = f(x, y) + f(x+1, y) + f(x+1, y–1) + f(x, y–1) + f(x–1, y–1) +

f(x–1, y) + f(x–1, y+1)+f(x, y+1) + f(x+1, y+1)

By using the formula

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

60

∑ ∑∑
8

1

1

1

1

1

}
1

{),(

n

w

x

h

y n

s u m
yxO (4.11)

Where

 O(x, y) = the output pixel value

 n = step number

 w = image width

 h = image height

Experimental results

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 4.12: Test images for anytime noise reduction

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 4.13: (a) Standard Lena image with size 1024x1024 (b) ~ (i) smoothing result images by

divided 8 sub-masks using 3x3 Gaussian filter

Figure 4.12 shows some of the test images for anytime noise reduction.

First, the random noise is inputted to the standard input images, then, the noise

reduction task is performed by the related sub-masks using 3x3 Gaussian filter

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

61

step by step. Figure-4.13 (a) is the input standard Lena image and Fig. 4.13 (b) to

(i) are the experimental results of the smoothed image performed by divided

sub-masks. Here, the different intermediate results can be obtained by applying

the sub-masks of 3x3 mean filter even though the noise reduction quality is

evaluated by SNR.

Figure 4.14 displays the performance curve of step vs quality of result

i.e., the probability of number of reduced noise. It expresses that the average

performance curve of the quality of noise reduction result gradually improves

as the processing time increases with related steps.

Fig.4.14: Performance curve of noise reduction by Gaussian filter

Another experiment is done by using the artificial noisy images as

shown in Fig. 4.15 by putting quantization noise (uniform noise) as an example.

Then, perform the anytime simple averaging algorithm to the input noisy image

2 shown in Fig. 4.12. Figure 4.16 represents the noise reduced images for image

2, here, the results of other images are not represented because of the lack of

space. Figure 4.17 represents the noise reduced rate (improvement rate) by

performance curve for AA noise reduction for the tested images. We can see

that noise reduced rate gradually improve as processing time increases as

shown in Fig. 4.17 for image 1, 2, and 3 respectively.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

62

Fig. 4.15: Input noisy image

(a) step–1 (b) step–2 (c) step–3 (d) step–4

(e) step–5 (f) step–6 (g) step–7 (h) step–8

Fig. 4.16: Noise reduced images applying step 1 to 8 by using Mean filter

Fig. 4.17: Performance curves for AA noise reduction

AA simple averaging

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8

Step no.

Im
p

ro
v

em
en

t
ra

te

Image 1
Image 2
Image 3

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

63

4.3.2 AA Edge Detection

In the conventional edge detection operation, the gradient method is applied to

measure the gradient of the image along two orthogonal axes, and it is the best

for abrupt discontinuities. The useful operators are Sobel, Canny, Prewitt, and so

on. In this AA edge detection, Prewitt operator is applied using two 3 x 3 masks

(kernels), which are convolved with the original image to calculate the

approximations of the derivatives - one for the horizontal changes, and one for

the vertical.

Let

S = input source image’s pixel

Gx and Gy = two sub images which at each point contain the horizontal

and vertical derivative approximations

Prewitt operator

Gx = S * and Gy = S *

In anytime gradient method, the 6 different results are obtained by

changing orientation or filter type horizontally and vertically alternately as

shown in Fig. 4.18. At each point G(x, y) in the image, the resulting gradient

approximations can be computed step by step using the gradient formula

22

yx GGG (4.12)

For the edge detection task, Prewitt 3x3 filter mask is divided into 6

different filters as shown in Fig. 4.18. Thus, it is performed by 6 steps by

changing the filter type 1 to 6 and the 6 different results can be obtained at each

step and the quality of result gradually becomes better as the processing time

increases. So, the result can be defined exactly at each step, that is satisfying the

AA properties (1) and (2), and also in these steps, the result of step 1 is used in

step 2, the result of step 2 is used in step 3 and so on. Hence, the quality of

result is improved increasingly at each step, so it is monotonicity that satisfies

the AA property (3). Moreover, the result of step 2 is used for performing step 3

to obtain the result at every step, so the quality of previous result is connected

at every step which is satisfying the properties (4) and (5). In case that, if the

algorithm is stopped for e.g., at step 4 in this procedure, the partial or

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

64

intermediate result can be obtained for this step and re-started again at current

step, thus it is satisfying the AA properties (6) and (7).

Sub-filter 1 Sub-filter 2 Sub-filter 3 Sub-filter 4 Sub-filter 5 Sub-filter 6

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Fig. 4.18: Anytime gradient method by Prewitt filter

Experimental results

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 4.19: (a) Original image with size 2048x2048 (b) ~ (g) edge detection results by divided

sub-masks of Sobel filter

Figure 4.19 shows the experimental result of anytime algorithmic edge

detection by divided sub-masks of Sobel 3x3 filter. The 6 different results are

obtained with required processing time and related steps, and the quality of

edge detection result at each step is increasingly improved as the processing

time increased as shown in Fig. 4.20.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

65

Fig. 4.20: Performance curve of anytime algorithmic edge detection by Sobel filter

In Fig. 4.21(a), it shows the input gray image that has different

orientation of lines as tested image for edge detection and Fig. 4.21 (b) to (g) are

the experimental result of anytime algorithmic edge detection by divided

sub-masks of Prewitt 3x3 filter.

(a) Input gray image

(b) (c) (d) (e) (f) (g)

 Fig. 4.21: (a) input gray image (b) ~ (g) Edge detected images by filter type 1 to 6 using

Prewitt operator

As we can see in Fig. 4.21, the different 6 steps of result can be obtained

at each step and its qualities gradually become better as processing time

increases represented by using performance curve as shown in Fig. 4.22(b). Fig.

4.22(a) represents the midway result at step 3, and (b) is the performance cure of

edge detection and it is satisfied the properties of anytime algorithm (6) and (7).

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

66

(a) (b)

Fig. 4.22: (a) Midway result at step 3 (b) Performance curve for edge detection

4.3.3 AA Sharpening

Experimental results

(a)

 (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 4.23: (a) Original image with size 1024x1024 (b) ~ (i) sharpening result images by divided

sub-masks of basic hi-pass filter

Figure 4.23 (a) is the input camera man image for AA sharpening and (b) to (i)

AA Edge Detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

Filter Type
Im

p
ro

ve
m

en
t

R
at

e

Prewitt

Canny

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

67

show the experimental result of sharpening by divided sub-masks of basic

hi-pass 3x3 filter. We can see that the 8 different results are obtained with

required processing time and related steps. Thus, the quality of sharpened

result at each step is increasingly improved as the processing time increased.

Figure 4.24 shows the performance curve of sharpening result by basic hi-pass

filter.

Fig.4.24: Performance curve of sharpening by basic hi-pass filter

4.3.4 AA thinning

Thinning is one of the morphological operations that have iterative task and

performs on binary image. The objective is to reduce the connected pixel into

one line character pixel. In a conventional thinning algorithm, there are many

conditions to remove successive pixels by maintaining the object connectivity.

An anytime algorithmic thinning could be realized by changing conditions with

5 steps and delete connected border pixels by maintaining the object

connectivity at each step.

In AAIP, an anytime algorithmic thinning could be realized by changing

the conditions as follows:

 Condition number 1 : cond(A)

 Condition number 2 : cond(A) and (B)

 Condition number 3 : cond(A) and (B) and (C)

 Condition number 4 : cond(A) and (B) and (C) and (D)

 Condition number 5 : cond(A) and (B) and (C) and (D) and (E)

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

68

Here,

 cond(A) : connectedness of the point is not 1

cond(B) : connectedness of the point is not 0

cond(C) : connectedness of the point is not 2

cond(D) : keeps connectivity

cond(E) : lines 2 pixels wide

This scheme outputs 5 steps of result whose qualities gradually become

better when the processing time increases. Fig. 4.25 is the input binary image

that has thin and elongated object and Fig. 4.26 (a) to (e) are the results thinned

images at each step by changing the condition 1 to 5 step by step using

Hilditch’s method.

Experimental results

Fig. 4.25: Input binary image

(a) (b) (c) (d) (e)

Fig. 4.26: Thinned image by Hilditch’s method

Figure 4.27 displays the performance curve of AA thinning method for

above input image and it represents the quality of result become better as

increasingly at each step.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

69

Fig. 4.27: Performance curve for thinning by Hilditch’s method

4.3.5 AA Boundary Detection

In this sub-section, how to apply anytime algorithm to boundary extraction

using anytime algorithmic erosion method is described.

Boundary extraction by anytime algorithmic erosion

Algorithm 2: Anytime algorithmic boundary extraction

Step-1: Input gray scale image and sub-structuring element B1. Convert gray

scale to binary image A.

Step-2: Perform the anytime algorithmic erosion operation (Algorithm 1) of

input image by B1 and store the result to temporary storage.

Step-3: Output the current eroded image A1.

Step-4: Perform the operation (A1 Ө B1)c i.e., the complement of A1 Ө B.

Step-5: Perform the boundary extraction operation β1(A)=A1 ∩ (A1 Ө B)c.

Step-6: Output the extracted the boundary points β1(A).

Step-7: Repeat step 4 to 6 by using sub-structuring elements B2 to B7, the eroded

images A2 to A8 and the boundary extracted image β2(A2) to β8(A8).

Step-8: Output the final extracted boundary points.

AA Thinning

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Step

Im
p

ro
v
e
m

e
n

t
ra

te

Condition

number 1

Condition

number 2

Condition

number 3

Condition

number 4

Condition

number 5

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

70

So, the processing steps are considered as follows:

A1 = A Ө B1

β(A1) = A ∩ (A Ө B1)c = A ∩ A1c

A 2 = A 1 Ө B2

β(A2) = A ∩ (A1 Ө B2)c = A ∩ A2c

A 3 = A 2 Ө B3

β(A3) = A ∩ (A2 Ө B3)c = A ∩ A3c

A 4 = A 3 Ө B4

β(A4) = A ∩ (A3 Ө B4)c = A ∩ A4c

A 5 = A 4 Ө B5

β(A5) = A ∩ (A4 Ө B5)c = A ∩ A5c

A 6 = A 5 Ө B6

β(A6) = A ∩ (A5 Ө B6)c = A ∩ A6c

A 7 = A 6 Ө B7

β(A7) = A ∩ (A6 Ө B7)c = A ∩ A7c

A 8 = A 7 Ө B8

β(A8) = A ∩ (A7 Ө B8)c = A ∩ A8c

In general, the result or output of the boundary extraction can be performed by

β(Ai) = A ∩ (Ai-1 Ө Bi)c (4.13)

Experimental results

Erosion and boundary extraction with single iteration

First, smoothing operation is applied for the gray scale image as

described in [9], then convert it to binary image, after that anytime algorithmic

erosion is performed. Then boundary extraction by algorithm 2 is performed.

Figure 4.28 expressed that the experimental results by the proposed method.

Figure 4.28 (a) is the input image and (b) to (i), the first and third columns show

that eroded images applied by sub-structuring elements B1 to B8 and Fig.3 (b)’ to

(i)’, the second and fourth columns show that the boundary extracted results of

corresponding images in (b) to (i). These experimental results are obtained by

using the algorithm 2 which is repeatedly performed until the final

approximation of the correct output is reached.

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

71

(a)

Fig. 4.28: (a) Input image (b) ~ (i) are eroded images applied by sub-structuring elements B1 to

B8 and (b)’ ~ (i)’ are the boundary extracted results of corresponding images in (b) ~ (i)

Fig. 4.29: Some of tested images

The tested standard images as shown in Fig. 4.29 and its information

are expressed as follows:

Gray scale images with pgm format and size 256x256

Standard images for the morphological operations are acquired from

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

72

the following link

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

4.4 Summary

This chapter provided the realization of digital image processing operations

and methods in low, mid and high level from the viewpoint of anytime

algorithm is described. The basic framework of the proposed method is

expressed by figures. Then, the conventional image processing methods are

categorized as filter type, gradient type, condition type, and morphological

processing type. After that, how to modify these methods to AAIP methods are

explained and presented anytime algorithmic erosion and boundary extraction

algorithms according to the concept of anytime algorithm. The experimental

results for noise reduction, edge detection, sharpening, thinning, and

morphological operations show that the better intermediate result can be

obtained with less processing time. The performance curves from the viewpoint

of probability theory for the correctness and certainty show that the quality of

result improves as the processing time increases. Some of test standard images

are applied to the boundary extraction application by morphological erosion

method. So, it is useful for the real-time image processing system under time

constraint and the implementation of embedded systems application in

real-time system.

References

[1] R.C. Gonzales, R.E. Woods: ‚Digital Image Processing‛, 2nd Edition, Prentice Hall,

2002.

[2] T. Dean, and M. Boddy : ‚An analysis of time dependent planning‛, Proceedings

AAAI-88, St. Paul, Minnesota, AAAI, 49–54, (1988).

[3] S. Zilberstein and S. J. Russell In S. Natarajan (Ed.) : ‚Approximate Reasoning

Using Anytime Algorithms‛, Imprecise and Approximate Computation, Kluwer

Academic Publishers, (1995).

[4] J. Grass and S. Zilberstein In M. Pittarelli (Ed.) : ‚Anytime algorithm development

tools‛, SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation

Scheduling, 7(2):20-27, (1996).

[5] S. Zilberstein Ph.D dissertation : ‚Operational Rationality through Compilation of

Anytime Algorithm,‛ Computer Science Division, University of California at

Berkeley, (1993).

[6] E. A. Hansen and S. Zilberstein : ‚Monitoring anytime algorithms‛ SIGART

Bulletin, 7(2), 1997.

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

CHAPTER 4-ANYTIME ALGORITHMIC IMAGE PROCESSING

73

[7] W.W.Kywe, D.Fujiwara, and K.Murakami : ‚Scheduling of Image Processing

Using Anytime Algorithm for Real-time System‛, Proc. of the 18th International

Conference on Pattern Recognition (ICPR2006), Vol.3, pp.1095-1098, Hong

Kong/China, (Aug. 2006) IEEE Computer Society, 2006

[8] W.W.Kywe and K.Murakami : ‚Anytime Noise Reduction and Edge Detection

Algorithms for Time-Restricted Image Processing System‛, Proc. of the 15th

Japan-Korea Joint Workshop on Frontiers of Computer Vision (FCV 2009),

pp.65-70, Andong/Korea, (Feb. 2009)

[9] W.W.Kywe and K.Murakami, "An Approach to Linear Spatial Filtering Method

based on Anytime Algorithm for Real-time Image Processing", Journal of

Computing Press, NY, USA, ISSN 2151-9617, Volume 4, Issue 12, pp.26-32, (Dec.

2012)

74

Chapter 5

Algorithms for Task Assignment and Scheduling

5.1 Introduction

In the hard real-time system, each task must be performed in order to extract

the required information by its hard deadline. In the real-time scheduling

system, most of the tasks are scheduled by the required time that is based on

the given deadlines. If the combination of many tasks is required to work in the

hard real-time, the problems of resource constraints such as processing time

have been involved for the completion of tasks by their deadline.

The solutions to solve this kind of problems are by using hardware such

as multi-processor, parallel processing and/or by using software such as

algorithm, pipeline, and cache. From the algorithmic and/or software point of

view, the guarantee of hard real-time deadline has been involved as a

challenging problem.

The imprecise computation method, i.e., generalization of anytime

algorithm, is one of the approximation methods to solve the trade-off problems

between the computation time and the quality of result. Conventional imprecise

scheduling methods solve this problem by discarding the optional sub-tasks i.e.,

the less importance tasks that could not meet their deadlines.

J.W.S. Liu et al. reviewed and proposed the scheduling algorithm by

their imprecise computation method that provides the scheduling flexibility by

trading off the quality of result to meet the computation deadlines [1]. W.K Shih

et al. proposed the fast algorithm to minimize the maximum errors for the

scheduling under timing constraints by the imprecise computation approach

[2].

In this chapter, how to solve the above problems from the algorithmic

point of view by the proposed imprecise scheduling in order to realize the

sub-optimal overall processing result while minimizing the discarded optional

sub-tasks is discussed.

The idea is by dividing the task into many sub-tasks performed by

many steps. Then, the sub-tasks with the necessary steps for the acceptable

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

75

result are divided into mandatory part and the left sub-tasks are in optional

part according to the pre-defined conditions. Mandatory sub-tasks are

performed by the mandatory steps and the optional sub-tasks are performed by

the left steps. Thus, the schedule of the combination of sub-tasks with related

processing time can be performed by the given parameter such as tact time and

the required sub-task numbers of the mandatory and optional sub-tasks. So, the

number of discarded optional sub-task can be reduced and overall result can be

realized. In particular, how to schedule the image processing tasks in order to

solve the time quality trade-off problem by the concept of anytime algorithm is

expressed [3].

5.2 How to Schedule the Tasks by Imprecise Computation

Imprecise Computation Model

A system based on the imprecise computation method is called an imprecise

task system. In the conventional imprecise computation method, there are two

main parts called mandatory part M and optional part O which is used to refine

the result of mandatory part. In this approach, the task is logically divided into

n sub-tasks performed by n steps, here n > 2. The mandatory part has k

sub-tasks called m1, m2, …, mk performed by k mandatory steps and 1 ≤ k ≤ n. In

this part, m1 is performed by step 1, m2 is performed by step 1 and 2, …, and mk

is performed by step 1, 2, …, k respectively. Thus, the optional part will have

(n-k) sub-tasks called ok+1, ok+2, …, on respectively and these are performed by the

left (n–k) optional steps. In this part, ok+1 is performed by k+1 step, then ok+2 is

performed by k+1 and k+2 steps etc. to refine the result of the mandatory

sub-tasks.

Definition and Terminology

Let us consider the imprecise task system T that composed of a set of N

tasks

T = {𝑇𝑖
𝑛𝑖} , i = 1, 2, …, N

In each task 𝑇𝑖
𝑛𝑖 , the subscript i denotes the task number and the

superscript ni denotes the total number of sub-task of each task i. Each task 𝑇𝑖
𝑛𝑖

is characterized by the parameters which are the rational numbers:

𝑟𝑖 = ready time of task i at which 𝑇𝑖
𝑛 𝑖 becomes ready for execution

𝑑𝑖 = deadline of task i at which 𝑇𝑖
𝑛 𝑖 must be completed

𝑚𝑖
𝑛𝑖 = mandatory processing time of mandatory sub-task of task 𝑇𝑖

𝑛 𝑖 for the

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

76

execution of feasible result

Here, the mandatory part is performed for the feasible (acceptable)

result and the required processing time of all sub-tasks in the mandatory part is

combined into 𝑚𝑖 which is the total mandatory processing time of sub-task 𝑚𝑖
𝑗
,

i = 1, 2, …, N.

i.e., 𝑚𝑖 = 𝑚𝑖
𝑗𝑘

𝑗=1 (5.1)

𝑜𝑖
𝑛 𝑖 = optional processing time of optional sub-task of task 𝑇𝑖

𝑛 𝑖 for the execution

of sub-optimal result

𝑜𝑖 = the total optional processing time of sub-task 𝑜𝑖
𝑛 𝑖 , i = 1, 2, …, N.

𝑡𝑖 = the amount of processing time assigned to the task 𝑇𝑖
𝑛 𝑖

𝑝𝑖 = 𝑚𝑖+𝑜𝑖
𝑛𝑖 = the total processing time of each task 𝑇𝑖

𝑛𝑖 to completion

Each sub-task has the related processing time which is less than the

processing time of the whole task. If the time is restricted, the schedule can be

obtained with the combination of the suitable sub-tasks with the minimum

processing time. Thus, the number of discarded optional sub-tasks would be

reduced and the intermediate sub-optimal overall result of all tasks could be

realized even though the quality of result is not perfect. The current step

computation is used the result of the previous step.

Each sub-task can be stopped at anytime with the approximated result

and then it can be resumed with the minimal overhead time. For the processing

of all tasks, the returned result of the first task is inputted to the next task and

so on. Thus, the feasible schedule can be realized by checking the pre-defined

condition according to the current execution time. Furthermore, the

sub-optimal overall result can be realized by checking the condition that the

current overall result is greater than or equal to the pre-defined overall result

which is evaluated by the minimum required number of mandatory sub-task.

So, the number of discarded optional tasks can be minimized while

approximating the sub-optimal overall result.

Each task can be partially performed by the required sub-tasks number

with the corresponding divided steps or the percentage of the required

sub-tasks. Thus, the different schedules are obtained with their related

processing time as shown in Fig. 5.1 which is the conceptual scheduling model

of the proposed scheduling scheme as an example.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

77

Fig. 5.1: Conceptual scheduling model

Table 5.1 and table 5.2 are the example data use for the scheduling in

the conventional and proposed methods used for the imprecise scheduling.

Table 5.1: Example data by the conventional scheduling method

Table 5.2: Example data by the proposed scheduling method

Fig. 5.2: Schedule by the conventional method

Fig. 5.3: Schedule by the proposed method

Figures 5.2 and 5.3 display the illustrative example schedules in the

conventional and the proposed methods. By comparing these schedules, the

 ri di pi mi oi
Task1 3 10 12 4 8
Task2 0 13 9 2 7
Task3 2 18 10 3 7
Task4 6 24 13 5 8

 ri di pi mi oi
 oi1 oi2 oi3 oi4

Task1 3 10 12 4 3 4 6 8
Task2 0 13 9 2 2 3 4 7
Task3 2 18 10 3 2 4 7
Task4 6 24 13 5 3 5 8

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

78

proposed method is efficient than the conventional and reduce the idle

processing time.

5.2.1 Algorithms for Scheduling under Time Constraint

Algorithm 1

How to realize the overall processing result while reducing the discarded

optional sub-tasks?

Step – 1: Search the mandatory task with minimum ready time 𝑟𝑖 and check

its processing time 𝑚𝑖 which is in its ready time and deadline, i.e.,

𝑟𝑖 ≤ 𝑚𝑖 ≤ 𝑑𝑖 . If it is, assign the processing time, 𝑡𝑖 = 𝑡𝑖 + 𝑚𝑖 , and

current processing time: 𝑡𝑐 = 𝑡𝑐 + 𝑡𝑖

Step – 2: If 𝑡𝑐 ≤ 𝑑𝑖 , calculate the difference of the time interval 𝑡𝑑 = 𝑑𝑖 − 𝑡𝑐

then search the optional sub-task with minimum 𝑜𝑖
𝑛 𝑖 of current task

which is satisfied the condition that 𝑡𝑐 ≤ 𝑜𝑖
𝑛𝑖 ≤ 𝑑𝑖 . If it is, 𝑡𝑖 = 𝑡𝑖 +

𝑜𝑖
𝑛𝑖, and 𝑡𝑐 = 𝑡𝑐 + 𝑡𝑖

Step – 3: Repeat step 1 to 2 until feasible schedule is obtained i.e., all

mandatory sub-tasks and some of optional sub-tasks are assigned.

Step – 4: Check the assigned sub-task numbers 𝑐𝑖 ∈ 𝑠𝑖 of each task 𝑇𝑖
𝑛 𝑖

which is satisfied the pre-defined condition𝑘𝑖 ≤ 𝑐𝑖 ≤ 𝑠𝑖 . If it is

satisfied, go to step 5, else go to step 1 for rescheduling in order to

obtain the sub-optimal overall result.

Step – 5: Perform the operation of tasks assigned by the above schedule.

Step – 6: Calculate the weighted value: 𝑤𝑖 =
𝑐𝑖

𝑘𝑖
 for determining the

probability of result 𝑅𝑖 of each task 𝑇𝑖
𝑛𝑖 .

Step – 7: Calculate the probability of sub-optimal overall processing result 𝑂

by

 𝑂 =
 𝑤 𝑖𝑅

𝑖𝑁
𝑖=1

 𝑅𝑖𝑁
𝑖=1

, 𝑤𝑖 ≤ 1, i = 1, 2, …, N. (5.2)

Algorithm 2

How to distribute the required processing time of each task?

Earliest Deadline First algorithm (EDF) [without priority task]

Step – 1: Input tact time (pre-run time) TT, number of tasks Ti, required

processing time ti and the deadline Di of each task performed by

steps.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

79

Step – 2: Search the minimum deadline Di or (the earliest deadline first) of

each sub-task of task Ti and check the condition that ti is less than or

equal to TT, then search the next minimum deadline which is ≤ (TT –

T1), and let it be T2 until no more execution time left or insufficient

execution time for any deadline left i.e., 0 ≤ TN ≤ (T – (T1 + T2 + … +

TN-1)

Step – 3: If all or some of the tasks assigned by the related processing time,

then first schedule i.e., S1 is obtained.

Step – 4: If the system received the stop signal from the checking point, then

output the intermediate result.

Step – 5: Repeat step 2 to 4 until no more processing time left or all of the tasks

are assigned by related processing time.

Algorithm 3

For the task assignment and scheduling by the imprecise computation method

Step 1: The required steps of each task is manually defined for the data

consistency.

Generate the random numbers for

- the execution time of each sub-task of N independent tasks

- the outcomes or results (i.e., the values of discrete random

variables X’s) at each step of N tasks within the particular ranges

Step 2: Calculate the PDF (Probability Distribution Function) ix

iP of the

outcomes of each sub-task

 i.e.,
i taskof outcomes of no. total

i task oftask x-subeach of outcomes of no.
=

iix
iP , i = 1, 2, …, N

Step 3: Calculate the probability of the overall outcomes R of the required

sub-task number of mandatory part which is manually input as

parameters ri, the left sub-tasks are assumed to the optional

sub-tasks.

 i.e., ii

N

i

r

i xrP
N

R i 1,
1

= ∑
1=

Step 4: Check the conditions that the current step number of each sub-task ≥

the required step numbers of each mandatory sub-task, for the

schedulability, and the current probability of overall outcomes ≥ the

previous maximum probability, for the sub-optimal overall

outcomes.

Step 5: Check the condition for the probability of success by Monte-Carlo

simulation method i.e., the current probability of the overall

outcomes ≥ R, then count the no. of success and do the statements.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

80

Step 6: Calculate the probability of success by using the equation:

r u n e a c h t r i a la t s c h e d u l e of no. total

run each trialat scuccess of no.
 =run each trialat success ofy probabilit The

Step 7: Repeat step 1 to 6 for n times.

Step 8: The possibility of the proposed method is calculated by the equation:

n

kr u n a t t r i a l s u c c e s s ofy probabilit the
 krun each trialat success ofy probabilit average The

1

n

k

Algorithm 4

Estimation of the overall processing result for the boundary detection

application

(1) Determine the condition that minimum required step number of task 1

(noise reduction), task 2 (edge detection), task 3 (thinning), and task 4

(boundary detection) and let them be k1, k2, k3, and k4 for e.g., k1 = 1, k2 = 3,

and k3 = 3, k4 = 2.

(2) Select the executable function f1 i.e., convolution function for noise

reduction by arithmetic mean operator with input value x i.e., input

image and the step no. c1 = 2 of task 1, which is satisfied the condition

that (c1=2) ≥ (k1=1).

(3) Execute the function f1(x, c1) and let the result be y1, i.e., the amount of

reduced noise expressed by the noise cleaned image.

(4) Select the next executable function f2 i.e., derivative function for edge

detection by gradient method (Prewitt operator) with input value y1 (the

result of the previous function) and the step no. c2 = 3 of task 2 which is

satisfied the condition that (c2 = 3) ≥ (k2 = 3).

(5) Execute the function f2(y1, c2) and let the result be y2 i.e., the detected edge

points.

(6) Select the next executable function f3 i.e., thinning function by Hiltdich

method with input value y2 (the result of the previous function) and the

step no. c3 = 4 of task 3 which is satisfied the condition that (c3 = 4) ≥ (k3 =

3).

(7) Execute the function f3(y2, c3) and let the result be y3 i.e., the thinned

image.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

81

(8) Select the next executable function f4 i.e., boundary detection function by

chain coding method with input value y3 (the result of the previous

function) and the step no. c4 = 3 of task 4 which is satisfied the condition

that (c4 = 3) ≥ (k4 = 2).

(9) Execute the function f4(y3, c4) and let the result be y4 i.e., the detected

boundary points.

(10) Display the overall processing result: y = f4◦f3◦f2◦f1◦x

(11) Calculate the overall processing result.

5.2.2 Experiments and Results

(1) Experiment for the task assignment and scheduling by the imprecise

computation method by algorithm 1

The experiment is done by 100 trials run by simulation using

Monte-Carlo method for the realization of the sub-optimal overall result. Here, I

assume that the schedule is already obtained by the proposed algorithm step 1

to 4. Each task 𝑇𝑖
𝑛𝑖 has the assigned sub-task 𝑐𝑖 , the corresponding output of

sub-optimal result 𝑅𝑖 . The known data such as the processing time (ready time,

deadline, mandatory processing time, optional processing time), and the

required steps of each task and their related result are generated by the random

number generator. Here, 4 tasks, i.e., task 1, 2, 3, and 4 are considered, and these

tasks are performed by the steps 8, 8, 7 and, 7 respectively and the required

steps of the mandatory sub-task of these tasks are assigned to 4, 4, 4, 4

respectively.

 i.e., 𝑐1 ≥ 4, 𝑐2 ≥ 4, 𝑐3 ≥ 4, and 𝑐4 ≥ 4

 Step number

Task 1 1, 2, 3, 4, 5, 6, 7, 8

Task 2 1, 2, 3, 4, 5, 6, 7, 8

Task 3 1, 2, 3, 4, 5, 6, 7

Task 4 1, 2, 3, 4, 5, 6, 7

Thus, we have

5
1

5
1

4
1

4
1
 =

5!

1! 5−1 !
×

5!

1! 5−1 !
×

4!

1! 4−1 !
×

4!

1! 4−1 !
 = 5 × 5 × 4 × 4 = 400

schedules of combinations of sub-tasks for the acceptable result. Figure

5.4 represents one of the performance curves of the probability of overall result

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

82

by processing time. Among these 400 schedules, the different 15 sub-optimal

schedules by tact time is obtained as shown in Table 5.3 and Fig. 5.5 due to

related processing time of each sub-task and time distribution according to the

proposed algorithm as one of examples.

Fig. 5.4: Probability of overall result by processing time

Table 5.3: Scheduling result of sub-task number by related processing time and sub-optimal

overall result

Processing

time

Task1

sub-task

no.

Task2

sub-task

no.

Task3

sub-task

no.

Task4

sub-task

no.

Sub-optimal overall

result

49 5 5 5 5 0.415803

51 5 5 5 6 0.415803

53 5 5 6 6 0.415803

54 5 5 7 6 0.415803

55 5 5 5 7 0.415803

57 5 5 6 7 0.415803

58 5 5 7 7 0.415803

62 6 5 7 7 0.735854

63 5 6 7 7 0.735854

69 6 7 7 7 0.735854

70 5 8 7 7 0.735854

77 7 8 7 7 0.735854

82 8 8 7 7 1

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

83

Fig. 5.5: Different sub-optimal schedules by tact time

Figure 5.6 expresses the quality of sub-optimal overall processing result

which gradually improves the processing time increases even though the result

is not perfect. The average percentage of sub-optimal overall processing result

is 72% and the average processing time is 89.1089 ms upon the 100 times trial

run. The time complexity of the proposed method is O(n).

Fig. 5.6: Probability of sub-optimal overall result by processing time

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

84

(3) Experiment for the distribution of the required processing time of each task

by algorithm 2

Experiment by simulation

The number of tasks is 4 and the number of corresponding sub-tasks of

task 1, 2, 3, and 4 are 8, 6, 6, and 5 respectively. Pre run-time for all tasks is 10

and the deadline of sub-tasks for each task is shown in the Table 5.4.

Table 5.4: Simulation experiment of the proposed imprecise task system

Task
Ready time

ri

Deadline

di
ti= mi + oi

Mandatory part

mi

Optional part

oi

sub-task no. sub-task no.

1 2 3 4 5 6 7 8

Task 1 0 5 5 0.5 1 1.5 2 3 4 4.5 5

Task 2 2 3 3 0.4 0.6 1 2 2.7 3

Task 3 4 5 5 0.9 1.7 2.1 3 3.8 5

Task 4 10 4 4 1 1.5 2 3 4

The utilization of the processing time of each sub-task at each schedule will be

utilization of
processing time

=
assigned time of each sub − task of task 𝑖

deadline time of each sub − task of task 𝑖

𝑁

𝑖=1

 (5.6)

Table 5.5: An imprecise task system

Task Ready time

ri

Deadline

di

ti= mi + oi Mandatory

mi

Optional

oi

Task 1 0 15 3 2 1

Task 2 2 8 5 3 2

Task 3 4 10 5 2 3

Task 4 5 13 3 1 2

Table 5.6: A weighted imprecise task system

Task Ready time

ri

Deadline

di

ti= mi + oi Mandatory

mi

Optional

oi

Task 1 0 14 5 2 3

Task 2 2 7 3 1 2

Task 3 4 9 5 3 2

Task 4 10 15 4 2 2

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

85

Table 5.7: Expected experimental result

Schedule
Time

(ms)

Assignment of tasks by its sub-task and distributed processing time
Idle

time

(ms)

Task 1 Task 2 --- Task N

Sub-task

Time

Sub-task

Time

--

-

--

-
Sub-task # Time

S1 T1 0 0 1

 1

I1

S2 T2 1

1, 2

 1, 2, 3

I2

S3 T3 1, 2

1

 1, 2

I3

|

|

|

|

|

|

Sk Tk 1, 2, …, k

1, 2, 3

 1, 2, …, kN

IK

|

|

|

|

|

|

SN

TN

Pre

run-t

ime

1, 2, …,

n1
1, 2, …,

n2
 1, 2, …, nN

In

q(ti) the quality of result at processing time ti

Let

 is the error in the result produced by Ti

Ei gives the error of the task Ti as a function of .

Fig. 5.7: Schedules by distributed time

0

5

10

15

20

25

0

1
.3

2
.6

3
.9

5
.2

6
.5

7
.8

9
.1

1
0
.4

1
1
.7 1
3

1
4
.3

1
5
.6

1
6
.9

1
8
.2

1
9
.5

2
0
.8

2
2
.1

2
3
.4

2
4
.7 2
6

2
7
.3

t1

q1

t2

q2

t3

q3

t4

q4

q

Q

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

86

(3) Experiment for the task assignment and scheduling by the imprecise

computation method by algorithm 3

Objective

- Minimization of the discarded optional sub-tasks

- Realization of the overall outcomes of combination of many tasks

Experiment by simulation

The experiment is done by Monte-Carlo simulation method for 4 independent

tasks as a sample.

 The required steps of each task is manually defined by 10, 15, 18, and 16 for

the data consistency.

 The values of discrete random variables X’s as the value of overall

outcomes of each sub-task are generated within the range [100, 1000], and

the execution times of each sub-task of 4 independent tasks are generated

within the range [1, 5] in ms.

 The required steps number of each sub-task as parameters for the

sub-optimal overall outcomes are 5, 6, 7, and 4 respectively. So, the left

optional sub-tasks of 4 tasks are 5, 9, 11, and 12 respectively. The

probabilities of required mandatory parts are
4

4
7

3
6

2
5

1 ,,, PandPPP

respectively.

)+++(
4

1
= 4

4
7

3
6

2
5

1 PPPPR

 100 times trial runs

The average probability of
success at each trial run 𝑘

=
the probability of success at trial run 𝑘

100

100

𝑘=1

and, it is 0.847509, so the possibility of success rate of the proposed method

is 84.75%.

Experimental results

Table 5.8 and Fig. 5.8 show the experimental results of the probability of

success for 10 trial runs.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

87

Table 5.8: The probability of success at each trial run and their execution time

Trial run

no.

Prob. of

success

No. of

success

Total no.

of

schedules

Total

execution

time

Mean

1 0.886364 78 88 183 0.886364

2 0.852273 75 88 378 0.869318

3 0.860465 74 86 548 0.866367

4 0.911111 82 90 724 0.877553

5 0.463158 44 95 884 0.794674

6 0.911504 103 113 1054 0.814146

7 0.895833 86 96 1229 0.825815

8 0.873874 97 111 1413 0.831823

9 0.882353 90 102 1589 0.837437

10 0.851351 63 74 1758 0.838829

Fig. 5.8: The probability of success by graph

The schedule of each sub-task by the required step numbers for the

sub-optimal overall outcomes for the first trial run is shown in Table 5.9 and Fig.

5.9.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

il
it

y
 o

f
su

cc
es

s

Number of trial run

Probability of success

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

88

Table 5.9: The different sub-optimal schedules by the required sub-task number of each task

with their related execution time

Trial

run no.

Exe.

Time

Optim

um

time1

Sub-task

no. of

task1

Optim

um

time2

Sub-task

no. of

task2

Optim

um

time3

Sub-task

no. of

task3

Optim

um

time4

Sub-task

no. of

task4

1 87.1 27 9 26 9 20 7 14 4

1 88.1 29 10 17 6 28 10 14 4

1 89.1 29 10 26 9 20 7 14 4

1 91.1 27 9 30 10 20 7 14 4

1 92.1 29 10 26 9 23 8 14 4

1 93.1 29 10 30 10 20 7 14 4

1 95.1 27 9 26 9 28 10 14 4

1 97.1 29 10 26 9 28 10 14 4

1 99.1 27 9 30 10 28 10 14 4

1 101.1 29 10 30 10 28 10 14 4

1 104.1 29 10 33 11 28 10 14 4

1 106.1 29 10 43 14 20 7 14 4

1 108.1 27 9 39 13 28 10 14 4

1 109.1 29 10 46 15 20 7 14 4

1 110.1 29 10 39 13 28 10 14 4

1 112.1 29 10 17 6 52 18 14 4

1 114.1 29 10 43 14 28 10 14 4

1 117.1 29 10 46 15 28 10 14 4

1 119.1 27 9 26 9 52 18 14 4

1 121.1 29 10 26 9 52 18 14 4

1 123.1 27 9 30 10 52 18 14 4

1 125.1 29 10 30 10 52 18 14 4

1 128.1 29 10 33 11 52 18 14 4

1 130.1 29 10 30 10 52 18 19 5

1 132.1 27 9 39 13 52 18 14 4

1 134.1 29 10 39 13 52 18 14 4

1 136.1 27 9 43 14 52 18 14 4

1 138.1 29 10 43 14 52 18 14 4

1 141.1 29 10 46 15 52 18 14 4

1 143.1 29 10 43 14 52 18 19 5

1 146.1 29 10 46 15 52 18 19 5

1 150.1 29 10 46 15 52 18 23 6

1 151.1 29 10 43 14 28 10 51 14

1 152.1 29 10 39 13 28 10 56 16

1 153.1 29 10 30 10 52 18 42 11

1 154.1 29 10 43 14 28 10 54 15

1 155.1 29 10 26 9 52 18 48 13

1 156.1 29 10 43 14 28 10 56 16

1 157.1 29 10 46 15 28 10 54 15

1 158.1 29 10 26 9 52 18 51 14

1 159.1 29 10 46 15 28 10 56 16

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

89

1 160.1 29 10 46 15 52 18 33 8

1 161.1 29 10 26 9 52 18 54 15

1 162.1 29 10 30 10 52 18 51 14

1 163.1 29 10 26 9 52 18 56 16

1 165.1 29 10 30 10 52 18 54 15

1 166.1 29 10 43 14 52 18 42 11

1 167.1 29 10 30 10 52 18 56 16

1 169.1 29 10 46 15 52 18 42 11

1 170.1 29 10 33 11 52 18 56 16

1 171.1 29 10 39 13 52 18 51 14

1 172.1 29 10 43 14 52 18 48 13

1 173.1 27 9 43 14 52 18 51 14

1 174.1 29 10 39 13 52 18 54 15

1 175.1 29 10 43 14 52 18 51 14

1 176.1 29 10 39 13 52 18 56 16

1 178.1 29 10 43 14 52 18 54 15

1 180.1 29 10 43 14 52 18 56 16

1 181.1 29 10 46 15 52 18 54 15

Fig. 5.9: Different sub-optimal schedules by distributed time

27292927292927292729272929292729292729292927292729292927292929272927292929292929292929292929292929292729292929292929292929292929292929292927292929292929292929

2617 2630263026263030 4333 433739 46394317 4346262630 4630333730 3937393943434643464646434317 393930 4643462626 4343462630 46462630263330 4330 4633394343394643394643434646

2028 2020232028282828 2028 202828 20282852 2828525252 3652525252 505252525252525252522828 5252 28 52522828 525252 28 5228525228 52525252 5252 5252 5252 52525252 525252 5252525252

1419 141414141414141919234851 285456 33425154 28485156 3354514856 33545156 5154 4256 425651485154485156 5154565456

0 20 40 60 80 100 120 140 160 180 200

87

92

99

106

110

117

125

130

134

143

151

153

155

157

159

163

167

172

175

180

Time (ms)

D
is

tr
ib

u
te

d
 t

im
e

(m
s)

Schedule by time distribution

optimum_time1 optimum_time2 optimum_time3 optimum_time4

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

90

The distributed execution time and the outcomes of each sub-task and

their overall outcomes for the first trial run are shown in Table 5.10.

Table 5.10: Distributed time of each sub-task and their related probability and the probability of

the overall outcomes

Trial

no.

Execution

time (ms)

Optimum

time1
P1

Optimum

time2
P2

Optimum

time3
P3

Optimum

time4
P4

Probability

of overall

outcomes

1 87 27 0.9 26 0.580753 20 0.3 14 0.199351 0.500819

1 88 29 1 17 0.363027 28 0.5 14 0.199351 0.512851

1 89 29 1 26 0.580753 20 0.3 14 0.199351 0.5181

1 91 27 0.9 30 0.663227 20 0.3 14 0.199351 0.521437

1 92 29 1 26 0.580753 23 0.3 14 0.199351 0.527522

1 93 29 1 30 0.663227 20 0.3 14 0.199351 0.538719

1 95 27 0.9 26 0.580753 28 0.5 14 0.199351 0.550001

1 97 29 1 26 0.580753 28 0.5 14 0.199351 0.567282

1 99 27 0.9 30 0.663227 28 0.5 14 0.199351 0.570619

1 101 29 1 30 0.663227 28 0.5 14 0.199351 0.587901

1 104 27 0.9 43 0.932645 20 0.3 14 0.199351 0.588792

1 104 29 1 33 0.702426 28 0.5 14 0.199351 0.597701

1 106 29 1 43 0.932645 20 0.3 14 0.199351 0.606073

1 108 29 1 37 0.771592 28 0.5 14 0.199351 0.614992

1 108 27 0.9 39 0.845012 28 0.5 14 0.199351 0.616065

1 109 29 1 46 1 20 0.3 14 0.199351 0.622912

1 110 29 1 39 0.845012 28 0.5 14 0.199351 0.633347

1 112 27 0.9 43 0.932645 28 0.5 14 0.199351 0.637974

1 112 29 1 17 0.363027 52 1 14 0.199351 0.640595

1 114 29 1 43 0.932645 28 0.5 14 0.199351 0.655255

1 117 29 1 46 1 28 0.5 14 0.199351 0.672094

1 119 27 0.9 26 0.580753 52 1 14 0.199351 0.677745

1 121 29 1 26 0.580753 52 1 14 0.199351 0.695026

1 123 27 0.9 30 0.663227 52 1 14 0.199351 0.698363

1 125 29 1 46 1 36 0.6 14 0.199351 0.699765

1 125 29 1 30 0.663227 52 1 14 0.199351 0.715644

1 128 29 1 33 0.702426 52 1 14 0.199351 0.725444

1 130 27 0.9 37 0.771592 52 1 14 0.199351 0.725454

1 130 29 1 30 0.663227 52 1 19 0.271059 0.733571

1 132 29 1 39 0.845012 50 0.9 14 0.199351 0.734403

1 132 29 1 37 0.771592 52 1 14 0.199351 0.742736

1 132 27 0.9 39 0.845012 52 1 14 0.199351 0.743809

1 134 29 1 39 0.845012 52 1 14 0.199351 0.761091

1 136 27 0.9 43 0.932645 52 1 14 0.199351 0.765718

1 138 29 1 43 0.932645 52 1 14 0.199351 0.782999

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

91

1 141 29 1 46 1 52 1 14 0.199351 0.799838

1 143 29 1 43 0.932645 52 1 19 0.271059 0.800926

1 146 29 1 46 1 52 1 19 0.271059 0.817765

1 150 29 1 46 1 52 1 23 0.295111 0.823778

1 151 29 1 46 1 28 0.5 48 0.812619 0.825411

1 151 29 1 43 0.932645 28 0.5 51 0.887907 0.827394

1 152 29 1 43 0.932645 52 1 28 0.379908 0.828138

1 152 29 1 17 0.363027 52 1 54 0.956371 0.82985

1 152 29 1 39 0.845012 28 0.5 56 1 0.833509

1 153 29 1 39 0.845012 52 1 33 0.495134 0.835036

1 153 29 1 30 0.663227 52 1 42 0.689451 0.838169

1 154 29 1 46 1 28 0.5 51 0.887907 0.844233

1 154 29 1 43 0.932645 28 0.5 54 0.956371 0.84451

1 155 29 1 46 1 52 1 28 0.379908 0.844977

1 155 29 1 26 0.580753 52 1 48 0.812619 0.848343

1 156 27 0.9 26 0.580753 52 1 51 0.887907 0.849884

1 156 29 1 43 0.932645 28 0.5 56 1 0.855417

1 157 29 1 43 0.932645 52 1 33 0.495134 0.856945

1 157 29 1 46 1 28 0.5 54 0.956371 0.861349

1 158 29 1 26 0.580753 52 1 51 0.887907 0.867165

1 159 29 1 30 0.663227 52 1 48 0.812619 0.868961

1 159 29 1 46 1 28 0.5 56 1 0.872256

1 160 29 1 46 1 52 1 33 0.495134 0.873783

1 161 29 1 26 0.580753 52 1 54 0.956371 0.884281

1 162 29 1 30 0.663227 52 1 51 0.887907 0.887783

1 163 29 1 26 0.580753 52 1 56 1 0.895188

1 165 29 1 33 0.702426 52 1 51 0.887907 0.897583

1 165 29 1 30 0.663227 52 1 54 0.956371 0.904899

1 166 29 1 43 0.932645 52 1 42 0.689451 0.905524

1 167 29 1 30 0.663227 52 1 56 1 0.915807

1 169 29 1 46 1 52 1 42 0.689451 0.922363

1 170 29 1 33 0.702426 52 1 56 1 0.925607

1 171 29 1 39 0.845012 52 1 51 0.887907 0.93323

1 172 29 1 43 0.932645 52 1 48 0.812619 0.936316

1 173 27 0.9 43 0.932645 52 1 51 0.887907 0.937857

1 174 29 1 39 0.845012 52 1 54 0.956371 0.950346

1 175 29 1 46 1 52 1 48 0.812619 0.953155

1 175 29 1 43 0.932645 52 1 51 0.887907 0.955138

1 176 29 1 39 0.845012 52 1 56 1 0.961253

1 178 29 1 46 1 52 1 51 0.887907 0.971977

1 178 29 1 43 0.932645 52 1 54 0.956371 0.972254

1 180 29 1 43 0.932645 52 1 56 1 0.983161

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

92

1 181 29 1 46 1 52 1 54 0.956371 0.989093

1 183 29 1 46 1 52 1 56 1 1

Fig. 5.10: The performance curve of sub-optimal overall outcomes

Figure 5.10 shows the performance curve of the sub-optimal overall

outcomes of 4 independent tasks.

Experiment for image processing tasks by an adaptive scheduling using

algorithm 4

In particular, the proposed method is applied to the boundary detection

application in digital image processing as an example in order to optimize the

overall processing result. So, the example tasks are noise reduction (NR), edge

detection (ED), thinning (TH), and boundary detection (BD) performed by the

steps 8, 6, 5, and 5 respectively. Thus, noise reduction NR has 8 sub-tasks and

sub-task 1 is performed by step 1, sub-task 2 is performed by step 1 and 2, and

so on. Similarly, ED, TH, and BD have 6 sub-tasks, 5 sub-tasks, and 5 sub-tasks

performed by their corresponding steps respectively.

As mentioned above, the tasks are noise reduction, edge detection,

thinning, and boundary detection performed by the steps 8, 6, 5 and, 5

respectively and the minimum required steps of these tasks for the imprecise

but acceptable result are determined to 1, 3, 3, 2 respectively. Then, we can

choose the step number of each task depends on the required processing time,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Q
u

a
li

ty

Processing time

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

93

i.e.,

 Step number

Noise reduction 1, 2, 3, 4, 5, 6, 7, 8

Edge detection 3, 4, 5, 6

Thinning 3, 4, 5

Boundary detection 2, 3, 4, 5

Thus, we have

384

combinations of sub-tasks which is the same number as the possible acceptable

overall processing results. Among these results, what solution is the optimal

solution that depends on the required processing time of the combination of

sub-task. So, it is necessary to be considered the execution time of each sub-task.

The required step numbers of each task are determined by ki, so that it has

related processing time ti i.e., the required processing time at step ki, 0 < ti , i = 1,

2, …, N.

Experiment

In this case, the test images are multiple objects in an image for the

boundary detection and single object image for boundary detection and to

measure its length, area etc. Figure 5.11 expresses the original image and the

result of each task for the combination of 4 tasks i.e., noise reduction, edge

detection, thinning, and boundary detection for the purpose of detection of

boundary points for the dependent case. Figure 5.11 (b) to (e) represents the

result image of final step of each task as described in the above tasks. Figure

5.12 and Table 5.11 express the experimental result of scheduling of

combination of these tasks by graphical and tabular representations. Figure 5.13

is the performance curve of the maximum performance of combination of 4

tasks for scheduling in dependent case. This curve can confirm the maximum

performance of the combination of 4 tasks in a restricted time. As shown in this

figure, the total quality of these tasks gradually improves as the processing time

increases.

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

94

(a) Original input image

(b) Noise reduced image (c) Edge detected image

(d) Thinned image (e) Boundary detected image

Fig. 5.11: (a) Original input image (b) ~ (e) Output images by dependent case

Scheduling Results

Fig. 5.12: Graphical representation of scheduling of 4 tasks

Scheduling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4

Tact time (s)

A
s
s
ig

n
m

e
n

t
o

f
ti

m
e

t-edge
t-bpt
t-thin
t-noise

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

95

Table 5.11: Tabular representation of scheduling of 4 tasks for dependent case

Processing time (s)
Assignment of tasks

by processing time

Total

Quality

t t1 q1 t2 q2 t3 q3 t4 q4 Q

0 0 0 0 0 0 0 0 0 0

0.05 0 0 0 0 0.046 1 0 0 0.25

0.1 0 0 0 0 0.046 1 0 0 0.25

| | | | | | | | | |

| | | | | | | | | |

0.3 0 0 0 0 0.046 1 0 0 0.25

0.35 0 0 0.296 0.016 0.046 1 0 0 0.2539

0.4 0 0 0.296 0.016 0.046 1 0 0 0.2539

0.45 0 0 0 0 0 0 0.45 1 0.3745

0.5 0 0 0 0 0 0 0.48 1 0.5

0.55 0 0 0 0 0.046 1 0.48 1 0.5

| | | | | | | | | |

| | | | | | | | | |

1 0 0 0.453 1 0.046 1 0.48 1 0.75

| | | | | | | | | |

| | | | | | | | | |

1.4 0 0 0.453 1 0.046 1 0.48 1 0.75

1.5 0 0 0.453 1 0.046 1 0.48 1 0.75

1.6 0 0 0.453 1 0.046 1 0.48 1 0.7539

1.7 0.718 0 0.453 1 0.046 1 0.48 1 0.9234

1.71 0.718 0 0.453 1 0.046 1 0.48 1 0.9975

1.72 0.734 0.279 0.453 1 0.046 1 0.48 1 1

1.73 0.75 0.689 0.453 1 0.046 1 0.48 1 1

1.74 0.75 0.689 0.453 1 0.046 1 0.48 1 1

1.75 0.765 1 0.453 1 0.046 1 0.48 1 1

1.76 0.765 1 0.453 1 0.046 1 0.48 1 1

Fig. 5.13: Total performance of scheduling of 4 tasks

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

96

5.3 Effectiveness of the Proposed Method

Here, the effectiveness of the proposed method is presented as follows:

- the different intermediate results can choose with the related processing

time

- the different performance curves can be achieved

- the adaptive static scheduling can be performed

- it is suitable for the real-time image processing system that uses mega data

and restricted processing time such as image and video tracking, and image

transmission systems and for the scheduling of tasks under time constraint

etc.

- it is one of the idea to solve the time vs quality trade-off problems

encountered in real-time system by dividing the task into small sub-tasks

5.4 Summary

In this chapter, how to schedule the tasks by imprecise computation is

described by its algorithms case by case and the related experimental results.

After that, the scheduling of the combination of tasks is experimented by using

different processors and restricted time, undefined tact time without and with

priority for the dependent, independent and both cases. The experimental

results for the scheduling are shown by the graphical and tabular

representations. The performance curve is expressed for the combination of 4

tasks as an example. Then, the effectiveness of the proposed method is

expressed.

References

[1] J.W.S. Liu, K.-J. Lin, W.K. Shin, A.C.S Yu ‚Algorithms for Scheduling Imprecise

Computation‛ IEEE Trans. Computers ,Vol. 19,No.9, Sept. 1991,pp. ,156-1,173.

[2] W.-K. Shih and J.W.-S. Liu, ‚Algorithms for Scheduling Imprecise Computations

with Timing Constraints to Minimize Maximum Error,‛ IEEE Trans. Computers.,

vol. 44, no.3, pp. 466-471, Mar 1995.

[3] W.W. Kywe, D. Fujiwara and K. Murakami, ‚Scheduling of Image Processing

Using Anytime Algorithm for Real-time System,‛ Proc. of the 18th International

Conference on Pattern Recognition (ICPR2006), Vol.3, pp.1095-1098, Hong Kong/

China, 2006/08.

[4] T. Dean and M. Boddy, ‚An Analysis of Time-Dependent Planning,‛ Proc. AAAI-88,

pp.49-54, AAAI, (1988).

CHAPTER 5-ALGORITHMS FOR TASK ASSIGNMENT AND SCHEDULING

97

[5] S. Zilberstein and S. J. Russell. In S. Natarajan (Ed.), ‚Approximate Reasoning

Using Anytime Algorithms,‛ Imprecise and Approximate Computation, Kluwer

Academic Publishers, (1995).

[6] J.Grass and S. Zilberstein. In M. Pittarelli (Ed.), ‚Anytime Algorithm Development

Tools,‛ SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation

Scheduling, 7(2):20-27, (1996).

[7] S. Zilberstein Ph.D dissertation, ‚Operational Rationality through Compilation of

Anytime Algorithm,‛ Computer Science Division, University of California at Berkeley,

(1993).

[8] J.R. Parker, ‚Algorithms for image processing and computer vision,‛ John Wiley &

Sons, Inc. U.S.A, 1997.

98

Chapter 6

Overall Processing Result in AAIP

6.1 Introduction

This chapter explains the formulation of the quality function in each AAIP

method, and also the realization and evaluation of overall performance curves.

Then, the quality of image processing for noise reduction, edge detection,

thinning, and boundary detection including optimization of the overall

processing quality, its evaluation by time precision function, and the

performance curves for dependent and independent cases are described. After

that, the overall quality of scheduling is also explained. Furthermore, how to

evaluate the anytime algorithmic erosion and boundary detection is described

from the viewpoint of probability theory.

6.2 Formulation of Quality Function in AAIP

In this section, how to formulate the quality functions in AAIP is described.

Suppose that if the system is composed of 4 tasks and the total processing time

is restricted.

Let

 T = Restricted time

 P1, P2, P3, P4 = task 1, 2, 3, and 4 respectively

 q1i = quality of task P1 at step i, where i = 1, 2, …, a

 q2j = quality of task P2 at step j, where j = 1, 2, …, b

 q3k = quality of task P3 at step k, where k = 1, 2, …, c

 q4l = quality of task P4 at step l, where l = 1, 2, …, d

 t1, t2, t3, t4= total required time for the task P1, P2, P3, and P4 respectively

 Q = maximum performance of above 4 tasks

In general, the intermediate results of each task at current step are described

below:

 𝑞𝑗
𝑖 = 𝐹𝑖 𝑥𝑗 =

no.of approximated result at step j
no.of total result at final step

 (6.1)

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

99

In particular,

(1) For noise reduction, the probability of the reduced noises at step 2,

𝑞2
1 = 𝐹1 𝑥2 =

no. of approximated reduced noises at step 2

no. of total reduced noises at final step

=
30908

32935
 = 0.9385

Percentage of intermediate

result at step 2 for noise reduction
= 𝑞2

1 ∗ 100 = 0.9385 ∗ 100 = 93.85%

(2) For edge detection, the probability of the detected edge points at step 3,

𝑞3
2 = 𝐹2 𝑥3 =

no. of approximated detected edge points at step 3

no. of total detected edge points at final step

=
3609

5836
 = 0.6184

Percentage of intermediate

result at step 3 for edge detection
= 𝑞3

2 ∗ 100 = 0.6184 ∗ 100 = 61.84%

(3) For thinning, the probability of the thinned pixels or deleted points at step 4,

𝑞4
3 = 𝐹3 𝑥4 =

no. of approximated deleted points at step 4

no. of total deleted points at final step

=
1978

2412
 = 0.8201

Percentage of intermediate
result at step 4 for thinning

= 𝑞4
3 ∗ 100 = 0.8201 ∗ 100 = 82.01%

(4) For boundary detection, the probability of the detected boundary points at

step 3,

𝑞3
4 = 𝐹4 𝑥3 =

no. of approximated detected boundary points at step 3

no. of total detected boundary points at final step

=
925

2388
 = 0.3874

Percentage of intermediate

result at step 3 for boundary detection
= 𝑞3

4 ∗ 100 = 0.3874 ∗ 100 = 38.74%

Therefore, the percentage of the quality of the overall processing result of the

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

100

combination of 4 tasks can be defined by

𝑄 = 𝑞2

1 ৹𝑞3
2 ৹𝑞4

3 ৹𝑞3
4 ∗ 100 = 0.9385 ∗ 0.6184 ∗ 0.8201 ∗ 0.3874 ∗ 100

 = 0.1843 ∗ 100 = 18.43%

which expresses one of the quality of the possible overall processing result out

of 384 results.

6.3 Overall Performance

6.3.1 Realization of Overall Performance

Dependent case

In this case, if the system is composed of the combination of many tasks that are

inter-related each other in a particular time constraint. The calculation of

current result for a task is depend on the result of previous task i.e., to perform

task 2 is based on the result of task 1, and to perform task 3 is based on the

result of task 2, and so on. Then, the total performance (combined quality) can

be evaluated by using CPP that is described in chapter 2.

Let

T = Restricted time

 P1, P2, P3, …, Pn = task 1, 2, 3, …, n respectively

 Q1, Q2, Q3, …, Qn = quality of task 1, 2, 3, …, n respectively

t1, t2, t3, …, tn = total required time for each process P1, P2, P3, …, Pn

respectively

Thus,

 the total performance of combination of n tasks

Q = Qn{Qn – 1, ...Q4 {Q3 [Q2 (Q1 (Q0, t0), t1), t2], t3}, .. ., tn – 1} (6.2)

Here,

 Q0 and t0 means that the initial quality 0 and initial starting time 0 at

step 0

 Q1(Q0, t0) means that the quality at step 1 has input quality Q0 and

processing time t0

 Q2(Q1(Q0, t0), t1) means that the quality at step 2 has input quality Q1 and

processing time t1 and so on.

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

101

 In this case, the total quality Q might be less than or equal to the

maximum quality i.e., 1.

Independent case

In order to obtain the overall performance at each processing time or step, by

choosing the prior process that has predefined executing time with high quality

result if it meets the current processing time. If the time is not enough i.e., its

execution time is greater than current execution time, then we choose the

suitable processing time with appropriate quality result to avoid the huge

amount of rest time and so on. Formulation of quality functions for

independent case is described as follows:

In order to optimize the total performance in a restricted time, the

constructed optimization model is

 Max 𝑄 = (𝑞𝑛 𝑡𝑛)𝑁
𝑛=1 /𝑛 (6.3)

Subject to

 t11 + t12 + t13 + … + t1a ≤ t1

 t21 + t22 + t23 + … + t2b ≤ t2

 t31 + t32 + t33 + … + t3c ≤ t3

 t41 + t42 + t43 + … + t4d ≤ t4

 and

 t1 + t2 + t3 + t4 ≤ T

Here, t1, t2, t3, t4 ≥ 0

6.3.2 Evaluation of Overall Quality

The overall quality of image processing is defined by the quality of overall

result of the combined 4 independent tasks and it is evaluated by

The quality of overall processing result =
1

4
 𝑤𝑖𝑞(𝑖,4

𝑖=1 𝑗𝑖) (6.4)

Where

q(i, ji) = the improvement rate of the quality of result of the task i and its step

ji with related processing time

 i = 1, 2, 3, and 4, respectively

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

102

wi = weighted average value

6.4 Quality of Image Processing

In this section, how to define the quality of image processing in AAIP is

described. Figure 6.1 to 6.4 represent the performance curves of the average

noise reduced rate, the average edge detected rate, the average thinned rate,

and the average boundary detected rate by the AAIP method.

Fig. 6.1: The average performance curve of noise reduction by 8 steps

Fig.6.2: The average performance curve of edge detection by 6 steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

Q
u

a
li

ty

Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

Q
u

a
li

ty

Step

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

103

Fig. 6.3: The average performance curve of thinning by 5 steps

Fig. 6.4: The average performance curve of boundary detection by 5 steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Q
u

a
li

ty

Step

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

Q
u

a
li

ty

Step

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

104

Fig. 6.5: The performance curve for the overall processing result of 4 tasks

Fig. 6.5 expresses the quality of overall processing result evaluated by

(6.4) and it shows that the quality of overall processing result gradually

improves the processing time increases.

6.4.1 Realization of Overall Quality in Scheduling

Figure 6.6 shows the experimental results of the proposed scheduling

mechanism for 4 tasks by assigning the required processing time for each task

while reducing the idle/rest time. Figure 6.7 is the overall performance of

scheduling of 4 tasks and it confirms the effectiveness of this method satisfying

the definition of performance profile.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27

O
v
e
ra

ll
 P

e
rf

o
rm

a
n

ce

Time

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

105

Fig. 6.6: Scheduling result for 4 tasks

Fig. 6.7: Overall performance of 4 tasks

Table 6.1 shows the experimental data of proposed scheduling

mechanism.

Scheduling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

Tact time (s)

A
ss

ig
nm

en
t o

f t
im

e
t-edge
t-bpt
t-thin
t-noise

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

106

Table 6.1: Scheduling result for independent case

Processing

time (s)

Assignment of tasks

by processing time
Total

Quality

Q

Rest/Idle

time

(s) t1 q1 t2 q2 t3 q3 t4 q4

0 0 0 0 0 0 0 0 0 0 0

0.01 0 0 0 0 0 0 0 0 0 0.01

0.02 0 0 0 0 0 0 0 0 0 0.02

| | | | | | | | | | |

| | | | | | | | | | |

0.19 0 0 0.078 0.498 0 0 0.11 1 0.405138 0.01

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

1.39 0.406 1 0.14 1 0.734 1 0.11 1 1 0

6.4.2 Performance Curves

In this section, how to evaluate the performance curves for anytime algorithmic

erosion and boundary extraction. In this proposed method, let the result be

extracted boundary points, and the boundary extraction operation is performed

by the anytime algorithmic erosion method using many steps with the different

pattern of structuring elements. If the number of processing steps increases then

the required processing time also increases and quality of result will be

improved. Thus, the quality of result can be expressed by the number of steps

with related processing time by the probability of correctness i.e., certainty. The

performance curve can be evaluated from the viewpoint of probability theory.

Suppose that the discrete random variable

X = number of extracted boundary points = {xi }

xi = number of extracted boundary points at step i, xi ∈ R2, i = 1, 2, …, 8.

Thus, the Cumulative Distribution Function (CDF) of X is defined by

0 : i <= 0

F(xi) = xi /x8 : 0 < i < 8 (6.5)

1 : 8 <= i

Figure 6.8 shows the average performance curve of eroded points of

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

107

many tested images applied by algorithm 1.

Fig. 6.8: Performance curve of eroded points

Proposed Conventional

Fig. 6.9: Performance curve of boundary extracted points

Proposed Conventional

Figure 6.9 shows the average performance curve of boundary extracted

points of many tested images applied by algorithm 2 by using equation (2). As

shown in Fig. 6.8 and 6.9, the conventional method can obtain only one result

with required processing time and the proposed method can obtain multiple

course-to-fine results with required processing time, and the performance curve

CHAPTER 6-OVERALL PROCESSING RESULT IN AAIP

108

can be realized.

6.5 Summary

This chapter explained the formulation of the quality function in AAIP for noise

reduction, edge detection, thinning, and boundary detection as examples. Then,

formulation of the quality function to optimize the overall performance under

the processing time constraint for the dependent, independent and both cases

are described based on the concept of linear programming and probability

theory. After that, the performance curves of each AAIP method and the overall

performance of 4 tasks is expressed by figures. How to realize the overall

quality in scheduling is described by graphical i.e., performance curve and

tabular for the independent case. Moreover, how to evaluate the performance

curve for the anytime algorithmic erosion and boundary extraction is also

described from the viewpoint of probability theory.

References

[1] M. Boddy and T. Dean. ‚Decision-theoretic deliberation scheduling for problem solving in

time-constrained environments”, Artificial Intelligence, 67(2):245--286, 1994.

[2] Thomas Dean, ‚Deliberation Scheduling for Time-Critical Scheduling in

Stochastic Domains‛

*3+ S. Zilberstein, ‚Monitoring Anytime Algorithms‛

[4] A. Garvey, V. Lesser. ‚Design-to-Time Real-Time Scheduling”, IEEE

Transactions on Systems, Man and Cybernetics, 1993

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps
*5+ Garvey, Alan and Victor Lesser. ‚Design-to-time Scheduling and Anytime Algorithms‛,

SIGART Bulletin, 7 (2):16--19 (1996).

http://citeseer.comp.nus.edu.sg/85186.html

*6+ Dean, Thomas and Boddy, Mark, ‚An Analysis of Time_Dependent

Planning‛, Proceedings of Anytime Algorithm AI-88, St. Paul, Minnesota, pp.

49–54, 1988.

*7+ Hasegawa, H. Kubota and J. Toriwaki, ‚Automated construction of image

processing procedures by sample figure presentation‛, Proc. of 8th Int’l

Conference on Pattern Recognition (ICPR1986), Vol. 1, pp.586-588 (Oct.1986).

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

109

Chapter 7

Contact Lens Extraction by Thermo-Vision Image

7.1 Introduction

For the security improvement, introduction to biometrics technology is

performed positively. It is strongly promoted in order to defend a computer

system against injustice accesses and also to construct a secure system. Of

course, it is necessary to modify some of image processing method in

pre-processing to anytime algorithmic form to apply in real time system for the

security purpose e.g., image taken by web camera or thermo image taken by

thermo vision camera or finger print image in airport entry system. So, in this

research work, I studied about thermo vision camera and its thermo images to

support the pre-processing steps in biometric for the security purpose. I

particular, I studied how to extraction contact lens from thermo-vision image

using thermal properties.

So, in this chapter, I would like to explain about the procedure of

detection of contact lens wearing by using thermo-vision image for the

pre-processing step in the application of biometric. If the system uses face/iris

images, it is usually required the information whether a person wears

glasses/contact lenses or not in advance. Some researcher reported a method to

recognize glasses from an infrared image based on the property that the

infrared rays are hardly to pass a glass. But, there remains a problem that it is

difficult to recognize the contact lens from one shot infrared image because of

the differences of temperature between around the eye’s region and lens is very

small, and moreover, the area of eye region is not so wide.

The idea for detection of contact lens wearing or not is based on the

properties that the surface of the eye is always covered with liquid (tear), when

we widely open eyes, the temperature gradually falls because of the

evaporation of liquid (tear). And, there are differences of the transition of the

temperature whether we wear contact lenses or not. Moreover, there exist some

differences of temperature between soft and hard lenses. Based on these

properties, a method to extract and distinguish contact lenses from thermo

vision image i.e., infrared image sequences is proposed by using a

thermo-vision camera. Some experimental results show about 72% success and

this means that the possibility to apply this basic method to the pre-processing

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

110

of biometrics [1].

The rest of this chapter is organized with five sections, the basic

properties of thermal with and without wearing contact lenses is explained in

section 2. Then, the differences of the transition of the temperature in wearing

hard and soft lenses are expressed in section 3. The algorithms to extract and

distinguish hard and soft contact lenses are described in section 4. And then, the

experimental environment, experimental results and discussion are expressed

in section 5. Finally, the chapter summary including the extension of this

research part is described in section 6.

7.2 Basic Properties

7.2.1 Thermal Property with Contact Lenses

When we wear contact lens, there has the transition of temperature and its

shape becomes two peaks. Some experiments show that the temperature of the

eye when wearing contact lens is about 0.5 ~ 1.5 degree C lower than non lens

or without contact lens.

7.2.2 Thermal Property without Contact Lenses

The surface of a person’s eye is always covered with liquid (tear). After opens

his/her eyes, the temperature gradually falls because of the evaporation of

liquid. Furthermore, a wink returns the temperature and liquid as before. This

kind of periodical transition appears only in winking and breathing. This

research part focuses on the characteristic of the transition of the temperature.

The differences in a usual wink is only 0.1 ~ 0.2 [deg. C] and this would

be absorbed in the noises. By some experiments, it was clarified that closing

long time amplifies the differences. So, the testers are needed to close the eyes at

about 10 seconds and after rise up the temperature as high as possible, then to

reopen their eyes.

Figure 7.1 is the examples of thermo-vision images for non lens and

contact lens. Although some lower regions caused by sweat exist around the

nose as shown in Fig. 7.1 (a), an image of non lens, the difference around the

eye region is very small. Conversely, when wearing contact lens, the difference

is magnified as shown in Fig. 7.1 (b). This research focuses on the feature of this

difference and judges by using the histogram of temperature around the eyes.

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

111

Figure 7.2 shows the histogram of the temperature around the eyes related to

the thermo vision images as shown in Fig. 7.1. The shape of histogram of non

lens is uni-modal distribution, and the shape of histogram of contact lens is

bi-modal distribution, respectively.

(a) Non lens (b) Contact lens

Fig. 7.1: Examples thermo-vision images for non lens and contact lens

 (a) Non lens (uni-modal distribution) (b) Contact lens (bi-modal distribution)

Fig. 7.2: Histograms of temperature around eye region

7.3 Differences of Transition of Temperature in Wearing Soft

and Hard Lenses

Fig. 7.3: Typical example of the transitions of soft, hard and non lens

Some experiments show that the transition of the temperature differs from the

hard lens

soft lens

non lens

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

112

type of lens. Concretely, in the case of soft lens, the temperature monotonously

falls after the eye opens. Conversely, in the case of hard lens, once it falls rapidly,

then it rises again as shown in Fig. 7.3, (v-type transition). These properties are

newly found by this research part and applied these features to extract and

distinguish contact lenses [1].

Here, the transition of hard lens for some testers is similar to the soft or

non lens, i.e., monotonous fall. Thus, the first step of the recognition algorithm

which will be explained in next section judges whether it is hard lens or not,

then extracts the eye area and checks the conditions for the soft lens in the area.

7.4 Algorithms for Contact Lenses Extraction

As described in section 7.3, a hard lens extraction algorithm that expressed

below is necessary to apply first. If the hard lens’s conditions are not satisfied,

then apply the soft lens extraction algorithm.

7.4.1 Hard Lens Extraction Algorithm

Step–1: Input a thermo-vision image sequences that are taken for 15 seconds.

An example of thermo-vision image for hard lens is shown in Fig.

7.4(a).

Step–2: From these image sequences, cut 7 seconds data with opening eyes

(every 0.4 seconds).

Step–3: Apply anytime algorithmic smoothing operator of 3 x 3 in order to

remove thermal noises.

Step–4: Extract the candidate pixels which satisfy the hard lens’s condition, i.e.,

v-type transition (Fig. 7.4(b)).

Step–5: Apply a morphology opening process in order to remove small noises

and thin lines (Fig. 7.4(c)).

Step–6: After applying the labeling process, extract the 1st and the 2nd widest

areas among the pixel region to be the candidates of hard lenses.

Step–7: Check these 2 candidate areas to be satisfied by the locus condition for

hard lens. If it is satisfied, then decide this contact lens is ‘hard lens’ and

terminate the algorithm, otherwise go to soft lens extraction algorithm.

In Step 4, the pixels less than 33.5 or more than 38.0 degree C at the first

frame are omitted. If the two conditions which are the difference of the

temperature between the minimum frame’s and the first frame’s is larger than

0.8 degree C, and the difference between the minimum frame’s and the last

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

113

frame’s is larger than 0.3 degree C are satisfied, then let it be the candidate

pixels of hard lens. These values are obtained by many times of

pre-experiments.

(a) Original thermo-vision image (hard lens) (Step 1)

(b) Candidate pixels of hard lens’s region (Step 4)

(c) Candidate pixels of hard lens’s region after applying morphological opening (Step 5)

Fig. 7.4: Sample output images in processing steps for hard lens

7.4.2 Soft Lens Extraction Algorithm

Step–8: Extract the candidate pixels which satisfy the soft lens condition (Fig.

7.5(b)).

Step–9: Apply a morphology opening process in order to remove small noises

and thin lines.

Step–10: After applying a labeling process, then extract the 1st and the 2nd

widest areas among the pixel region to be in candidates of soft lens.

Step–11: Check the locus condition for these 2 candidate areas. If it is not

satisfied, then decide ‘non lens’ and terminate the algorithm,

otherwise, go to the next step.

Step–12: Calculate the histogram around the eye areas of the ‘soft lens’ obtained

above, and check another histogram condition. If the condition is

satisfied, then decide this contact lens is ‘soft lens’ and terminate the

algorithm, otherwise, decide as ‘non lens’.

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

114

In Step – 8, the pixels less than 33.5 or more than 38.0 degree C at the

first frame are omitted. Furthermore, the pixels that the temperature rise up

more than 0.7 degree C or fall down less than 1.0 degree C are omitted between

the neighboring frames (every 0.4 seconds). Next, let the pixels which satisfy the

following two conditions, the difference of the temperature is larger than 0.4

degree C between the first and the last frames’, and the difference between the

maximum and the minimum is from 0.5 to 2.0 degree C, be the candidate pixels

of the soft lens. These values are obtained by many times of pre-experiments.

Figure 7.5(a) shows an example of thermo-vision image of ‘soft lens’ and Fig.

7.5(b) is the result of Step8.

(a) Original thermo-vision image (soft lens) (b) Candidate pixels of soft lens’s region (Step 8)

Fig. 7.5: An example extracted result for soft lens

7.5 Experimental Results and Discussions

7.5.1 Machine Environment

The experimental environment is used by the following items:

Thermo-vision camera

Model: TVS-710

 Temperature range : -20 ~ 300 [deg. C]

 Frame rate : 1/30 [seconds]

 Image size : 320(H) X 240(V) [pixels]

 Wave length : 8 ~ 14 [micrometer]

PC

 Processor/memory : Xeon 3.07 GHz / 512 MB RAM

 OS : Windows XP

 Programming language : Visual C++ 7.0

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

115

7.5.2 Experiment

The experiment has done by the different seasonal conditions such as in winter,

in summer and in high humidity and the temperature’s conditions like room

temperature and humidity are expressed in Table 7.1.

Table 7.1: Experimental data

 Season’s condition

Cases
A

Winter

B

Summer

C

High humidity

Room temperature

[degree C]
20 ~ 23 28 ~ 32 24 ~ 25

Humidity 30 ~ 40 % 40 ~ 50 % 57 ~ 70 %

The instructions to the testers are as follows:

 Head position is face to a camera with no inclination

 The distance between the face and camera is at about 30 cm

 Open eyes after close eyes is more than 10 seconds (i.e., winking time)

 Be in quiet position during the measurement

7.5.3 Results and Discussions

The following table shows the experimental data and its related result. The

numbers of testers are 11 for hard lens, 14 for soft lens and 14 for non lens,

respectively. Experimental result shows that the recognition rates are about 80%

in winter (case A; 17 persons/21 persons), 50% in summer (case B; 4 persons/8

persons), respectively[2] and 50% in high humidity (case C; 5 persons/10

persons), and the overall recognition rate is 66% (i.e., 26 persons/ 39 persons).

Table 7.2: Experimental result

Detected

performance rate

Success

Persons

Total person

(Testers)

Case A 80 % 17 21

Case B 50 % 4 8

Case C 50 % 5 10

Average 66 % 26 39

Although the number of tester is not so large and cannot be said

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

116

definitely, the facts that the reason of the low recognition rate in summer and in

high humidity are caused by the difference of the transitions between in winter,

in summer and in high humidity as typically shown in Fig.7.6. Many

characteristic points appear in the transition in winter as shown in Fig. 7.6 (a).

Inversely, they are buried in summer as shown in Fig. 7.6 (b). And, they are

buried in high humidity as shown in Fig. 7.6 (c). In these seasons such as in

summer and in high humidity, the amplitude is comparatively small because

the evaporation from the surface of the eye decreases according to the increase

of the environmental humidity and the temperature.

 (a) Case A (in winter) (b) Case B (in summer)

(c) Case C (in high humidity)

Fig. 7.6: Typical examples of the transition of the temperature in different seasonal cases

7.6 Summary

This chapter clarified the new facts that (1) if a person opens his/her eyes, the

temperature gradually falls because of the evaporation of liquid (tear), (2) the

ha

rd

le

ns

hard lens

 soft lens

non lens

hard lens

soft lens

non lens
hard lens

soft lens

non lens

CHAPTER 7-CONTACT LENS EXTRACTION BY THERMO-VISION IMAGE

117

transition of the temperature differs whether he/she wears contact lenses or not,

and, (3) there exists some differences between soft and hard lens. Based on

these properties, it expressed a method to extract and distinguish contact lens

by using a thermo-vision image sequences for the application of Biometrics.

Some experimental results showed about 72% success rate. But, there still

remain some subjects to be solved, for example, it is required to absorb the

difference in the transition among individuals, and it is also important to realize

an autonomous method adaptive to the temperature and humidity in order to

tune the parameters used as the magic numbers in the algorithm and examine

the influence of movement of a subject when photographing it. Furthermore, to

examine the influence of the outside temperature/humidity might also be

needed. And, to measure the eye winking rate in a restricted time 33 ms i.e., 30

frames/second are the future works.

References

[1] K. Momiyama, K. Kato, and K. Murakami, ‚Contact Lens Extraction by Using

Thermo-Vision‛, Proc. of the 10th Symposium on Sensing via Image Information (SSII

2004),Yokohama,June2004,pp.471-477(in Japanese).

[2] M. Yoshida and K. Murakami, ‚A method to extract contact lens by using image

sequences of thermo-vision‛, ITE Technical Report, Vol.29, No.47 (ME2005-117),

Hokkaido, Aug.2005, pp.41-44 (in Japanese).

[3] Wyne Wyne Kywe, Masashi Yoshida and Kazuhito Murakami, “Contact Lens

Extraction by Using Thermo-Vision”, Proc. of the 18th International Conference on

Pattern Recognition (ICPR2006), Vol.4, pp.570-573, Hong Kong/China, 2006/08

118

Chapter 8

Conclusion

8.1 Introduction

In this chapter, I would like to summarize the whole contents of this research

work, its contribution, the advantages of the proposed methods and the further

extension. At first, I analyzed the problems encountered in real time system and

real-time image processing system (RTIP). Then, I constructed the adaptive

scheduling mechanism which is modified from the conventional imprecise

scheduling model using the concept of anytime algorithm for the optimization

of the overall processing result under time constraint. After that, I categorized

some of the conventional image processing operations and its related

procedures from the viewpoint of anytime algorithm.

Some of the conventional image processing (CIP) method is converted

to Anytime Algorithmic Image Processing (AAIP) method by the concept of

anytime algorithm. Then, AAIP tasks such as AA noise reduction, AA edge

detection, AA thinning, AA erosion and AA boundary detection are

implemented as an example for the construction of anytime algorithmic image

processing library. Evaluation of the quality function for each procedure i.e.,

performance profile calculation in AAIP are described case by case to present

the results of each modified procedure by using the cumulative probability

distribution function (CDF) from the viewpoint of probability theory.

An adaptive static scheduling method is proposed for the optimization

of the overall performance in a restricted time for a system that is composed of

many tasks by the concept of imprecise computation and anytime algorithm.

Experiments are done for each AAIP procedures, the adaptive scheduling for

the task assignment and scheduling, and the scheduling of image processing

tasks. The experimental results show that the intermediate or the imprecise

results of each task can be obtained at intermediate processing time and the

overall processing result of the combination of many tasks can be realized

under the processing time constraint. The quality function to optimize the

overall performance in a restricted time is defined by using linear programming

model and the concept of imprecise computation. The contact lens extraction

algorithm is also actualized for the hard lens and soft lens by using

thermo-vision image as a part of this research work.

CHAPTER 8-CONCLUSION

119

8.2 Contribution

The model of the quality functions offers a methodological contribution to the

field of system planning and scheduling in operation research in general.

Modification of CIP to AAIP methods offers a methodological and practical

contribution to the construction of image processing library by the concept of

anytime algorithm. The main aspects of this contribution are summarized as

follows:

(1) AAIP method

This method can provide the possible imprecise results by giving a

range answer with different qualities for each task under the condition that the

processing time is restricted. It can perform the task partially if the processing

time is restricted and it can perform the task completely if the processing time is

enough or more. Moreover, the combination of many tasks can also be

performed under the processing time constraint by giving the range answer of

overall processing result with different qualities. The quality of overall

processing result improves when the processing time increases satisfied by the

properties of anytime algorithm. Thus, the proposed AAIP method is useful for

the RTIP system encountered in time and quality trade-off problem. In addition,

it can optimize the overall performance of image processing result under time

restriction as well as reducing the idle processing time.

(2) Adaptive scheduling method

The adaptive scheduling method can schedule the combination of tasks

for a system under time constraint by distributing the time allocation for each

task. It can reduce the idle/rest processing time and it can optimize the total

(overall) performance in a restricted time. Furthermore, it can schedule the

combination of many tasks under time restriction for the optimization of overall

processing result using low performance machine. The utilization of this

method is the problem solving of optimal decision making by scheduling with

limited resources (processing time) in operation research, in artificial

intelligence, and in engineering.

8.3 Discussion

From my research work, I have known and understood the facts that anytime

algorithm can be applied to solve the fundamental problems of digital image

CHAPTER 8-CONCLUSION

120

processing tasks which is in discrete type in order to obtain the intermediate or

imprecise result in the restricted time from the view point of the image quality

and/or processing time. Some of Conventional Image Processing (CIP) methods

in low, mid, and high level could be converted to Anytime Algorithmic Image

Processing (AAIP) according to the definition and properties of anytime

algorithm. Moreover, the constructed AAIP methods have the advantages that

the intermediate result can be produced and the overall processing result of the

combination of many tasks can be realized during the processing time. In

addition, the adaptive scheduling can be performed for the system which is

composed of many tasks that are applied by AAIP methods under a condition

that the processing time is restricted in order to obtain the overall processing

result. Thus, I conclude that this proposed idea can extend and support for the

system that has many tasks for e.g., embedded system, object tracking system,

and image transmission system and others in a typical real-time system.

8.4 Future Work

This research work can be extended for other image processing methods like

histogram equalization, morphological image processing by anytime algorithm

for the construction of anytime algorithmic image processing library from the

viewpoint of image processing quality and processing time. Realize and

analyze the suitable system for the specific applications which can be applied

by the modified AAIP procedures and adaptive scheduling method. In addition,

the combination of linear programming model and anytime algorithm to solve

the optimization problems under time constraint are the extensions of this

research work.

121

Bibliography

*1+ T. Dean and M. Boddy, ‚An analysis of time-dependent planning‛, Proc. AAAI-88,

pp.49-54, AAAI, 1988.

*2+ S. Zilberstein, ‚Using anytime algorithms in intelligent systems‛, AI Magazine, vol.

17, no. 3, pp. 73-83, 1996.

[3] S. Zilberstein and S. J. Russell. In S. Natarajan ed., Approximate reasoning using

anytime algorithms, imprecise and approximate computation, Kluwer Academic

Publishers, 1995.

[4] J. Grass and S. Zilberstein. In M. Pittarelli ed., Anytime algorithm development

tools, SIGART Bulletin Special Issue on Anytime Algorithms and Deliberation

Scheduling, 7(2):20-27, 1996.

[5] S. Zilberstein Ph.D dissertation, Operational rationality through compilation of

anytime algorithm, Computer Science Division, University of California at Berkeley,

1993.

*6+ M. Seul, L. O’Gorman, and M.J. Sammon, Practical algorithms for image analysis,

Cambridge University Press, NY, 2005.

[7] Rafael C. Gonzalez and Richard E. Woods, Digital image processing, Prentice Hall,

2nd Edition, 2002.

[8] Harley R. Myler and Arthur R. Weeks, The handbook of image processing

algorithms in C, Prentice-Hall PTR, 1993.

[9] Hasegawa, H. Kubota, and J. Toriwaki, ‚Automated construction of image

processing procedures by sample figure presentation‛, Proc. of 8th Int’l Conf. on

Pattern Recognition (ICPR1986), Vol. 1, pp.586-588, Oct. 1986.

*10+ D. Fujiwara and K. Murakami, ‚On the scheduling of the image processing using

anytime algorithm‛, Proc. of MIRU2004, Vol.1, pp.87-92, July 2004. (in Japanese).

*11+ W. W. Kywe, D. Fujiwara, and K. Murakami, ‚Scheduling of image processing

using anytime algorithm for real-time system‛, Proc. of the 18th Int’l Conf. on Pattern

Recognition (ICPR2006), Vol.3, pp.1095-1098, Hong Kong / China, Aug. 2006.

[12] M. Last, A. Kandel, O. Maimon, E. Eberbach, ‚Anytime Algorithm for Feature

Selection‛, Department of Computer Science and Engineering, University of South

Florida, 4202 E. Fowler Avenue, ENB 118, Tampa, FL 33620, USA.

BIBLIOGRAPHY

122

[13] M. Boddy and T. Dean. ‚Decision-theoretic deliberation scheduling for problem solving

in time-constrained environments”, Artificial Intelligence, 67(2):245--286, 1994.

[14] A. Garvey, V. Lesser. ‚Design-to-Time Real-Time Scheduling”, IEEE Transactions on

Systems, Man and Cybernetics, 1993

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps

[15] Garvey, Alan and Victor Lesser. ‚Design-to-time Scheduling and Anytime Algorithms‛,

SIGART Bulletin, 7 (2):16--19 (1996).

http://citeseer.comp.nus.edu.sg/85186.html

*16+ W. Zhao, K. Ramamritham and J.A. Stankovic, ‘‘Preemptive Scheduling under

Time and Resource Constraints’’, IEEE Transactions on Computers 38(8), pp. 949-960

(August 1987).

*17+ K. Momiyama, K. Kato, and K. Murakami, ‚Contact Lens Extraction by Using

Thermo-Vision‛, Proc. of the 10th Symposium on Sensing via Image Information

(SSII 2004),Yokohama,June2004,pp.471-476(in Japanese).

[18] M. Yoshida and K. Murakami, ‚A method to extract contact lens by using image

sequences of thermo-vision‛, ITE Technical Report, Vol.29, No.46 (ME2005-116),

Hokkaido, Aug.2005, pp.41-44 (in Japanese).

[19] Harley R. Myler and Arthur R. Weeks, ‚The handbook of image processing

algorithms in C‛, Prentice-Hall PTR, 1993.

*20+ J.R. Parker, ‚Algorithms for image processing and computer vision‛, John Wiley &

Sons, Inc. U.S.A, 1997.

*21+ I. Pitas, ‚Digital Image Processing Algorithms and Applications‛, John Wiley &

Sons, Inc. U.S.A, 2000.

*22+ Anil K. Jain, ‚Fundamentals of Digital Image Processing‛, Prentice-Hall, Inc. U.S.A,

1989.

[23] http://www.profc.udec.cl

[24] http://www.eng.iastate.edu/ee528/sonkamaterial/chapter_1.htm

[25] http://www.eng.iastate.edu/ee528/sonkamaterial/chapter_2.htm#Image%20functions

[26] http://en.wikipedia.org/wiki/

[27] http://web.uct.ac.za/depts/physics/laser/hanbury/intro_ip.html

ftp://ftp.cs.umass.edu/pub/lesser/garvey-dtt-smc.ps
http://www.eng.iastate.edu/ee528/sonkamaterial/chapter_2.htm#Image%20
http://web.uct.ac.za/depts/physics/laser/hanbury/intro_ip.html

BIBLIOGRAPHY

123

[28] http://moab.eecs.wsu.edu/~cs445/Lecture_1.pdf#search='picture%20of%20digital

%20image%20processing

[29] http://www.aprs.org.au/dicta2002/dicta2002_proceedings/Yin258.pdf

[30] http://cs-alb-pc3.massey.ac.nz/notes/59318/l9.html

[31] http://archive.org/details/Lectures_on_Image_Processing

[32] http://ia700307.us.archive.org/7/items/Lectures_on_Image_Processing/

[33] http://www.engineering.uiowa.edu/~dip/LECTURE/lecture.html

[34] http://www.engineering.uiowa.edu/~dip/LECTURE/PreProcessing3.html

[35] http://www.math.tau.ac.il/~turkel/notes.html

[36] http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm

[37] http://www.algonet.se/~staffann/developer/realtimeintro.htm

[38] http://www.roborealm.com/help/Convolution.php

[39] http://www-rohan.sdsu.edu/doc/matlab/toolbox/images/morph3.html

[40] http://www.cs.cf.ac.uk/Dave/Vision_lecture/node50.html

[41] http://ronbigelow.com/articles/sharpen1/sharpen1.htm

[42] http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html

http://moab.eecs.wsu.edu/~cs445/Lecture_1.pdf#search='picture%20of%20digital
http://cs-alb-pc3.massey.ac.nz/notes/59318/l9.html
http://ia700307.us.archive.org/7/items/Lectures_on_Image_Processing/
http://www.engineering.uiowa.edu/~dip/LECTURE/lecture.html
http://www.engineering.uiowa.edu/~dip/LECTURE/PreProcessing3.html
http://www.math.tau.ac.il/~turkel/notes.html
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm
http://www.algonet.se/~staffann/developer/realtimeintro.htm
http://www.roborealm.com/help/Convolution.php
http://www-rohan.sdsu.edu/doc/matlab/toolbox/images/morph3.html
http://www.cs.cf.ac.uk/Dave/Vision_lecture/node50.html
http://ronbigelow.com/articles/sharpen1/sharpen1.htm
http://terpconnect.umd.edu/~toh/spectrum/Smoothing.html

124

LIST OF PUBLICATIONS

Journal Publication

1. Wyne Wyne Kywe and Kazuhito Murakami: "An Approach to Linear Spatial Filtering

Method based on Anytime Algorithm for Real-time Image Processing", Journal of

Computing Press, NY, USA, ISSN 2151-9617, Volume 4, Issue 12, pp.26-32,

December 2012, impact factor:0.21.

https://WWW.JOURNALOFCOMPUTING.ORG

International Conference Proceedings

1. Wyne Wyne Kywe, Daisuke Fujiwara, and Kazuhito Murakami: “Scheduling of Image

Processing Using Anytime Algorithm for Real-time System”, Proc. of the 18th

International Conference on Pattern Recognition (ICPR2006), Vol.3, pp.1095-1098,

HongKong/China, 2006/08. IEEE Computer Society, 2006

ISSN : 1051-4651, Print ISBN: 0-7695-2521-0, doi : 10.1109/ICPR.2006.1029

2. Wyne Wyne Kywe, Masashi Yoshida and Kazuhito Murakami: “Contact Lens

Extraction by Using Thermo-Vision”, Proc. of the 18th International Conference on

Pattern Recognition (ICPR2006), Vol.4, pp.570-573, HongKong/China, 2006/08

3. Wyne Wyne Kywe and Kazuhito Murakami: “Anytime Noise Reduction and Edge

Detection Algorithms for Time-Restricted Image Processing System”, Proc. of the 15th

Japan-Korea Joint Workshop on Frontiers of Computer Vision (FCV 2009), pp.65-70,

Andong/Korea, 2009/02

4. Wyne Wyne Kywe and Kazuhito Murakami: “New Approach to Image Processing

Methods by Anytime Algorithm for the Overall Result under Time Constraint”, Proc. of

the International Workshop on Advanced Image Technology (IWAIT 2010), Kuala

Lumpur/Malaysia, 2010/01

Others

1. Wyne Wyne Kywe and Kazuhito Murakami : “Minimization of the Discarded Optional

Sub-tasks and the Realization of the Overall Processing Result for the Task Assignment and

Scheduling by Imprecise Computation”, The Operations Research Society of Japan

Chubu Branch, 38th Chubu Branch Workshop Abstracts, pp. 37-40, Central Quality

Management Association / Nagoya, Japan, 2011/3

2. Wyne Wyne Kywe, Daisuke Ukai and Kazuhito Murakami

"Feature Extraction from Thermo-image for Identification", 2013 International

Workshop on Smart Info-Media Systems in Asia (SISA2013)

Aichi Industry & Labor Center, Nagoya, Japan, Sep. 30 - Oct. 2, 2013

https://www.journalofcomputing.org/
http://dx.doi.org/10.1109/ICPR.2006.1029

