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A Cancellation Method of Periodic Interference in
Pulse-Like Signals Using an Adaptive Filter and Its

Application to Flash ERGs
Naohiro Toda

Abstract— This paper proposes a method that uses an adaptive
filter to cancel out the periodic interference that appears in
transient pulsed signals (this is referred to as a pulse-like signal).
Vibrational components that disturb such pulse-like signals, even
in the absence of periodic interference, as the signals are input to
an adaptive filter were first clarified theoretically. Such compo-
nents become smaller as the adaptation time of the algorithm is
increased. However, when the number of synchronous addition
averaging operations is larger, there is a danger of the error
(amount of noise) becoming larger than when no adaptive filter
is used, because the phase of the periodic interference is locked
with respect to the pulse-like signals. This component is referred
to as the self-canceling component in this paper. In addition,
a mask process is proposed that does not update the adaptive
filter coefficient while the pulse-like signals are sustained, with the
assumption that the characteristics of the periodic interference
do not change rapidly. The ability of this process to inhibit the
generation of self-canceling components was verified through
a numerical simulation. Furthermore, an adaptive filter that
implemented the proposed mask processing was applied to an
actual electroretinogram (ERG) with flash light stimuli, and its
effectiveness was verified.

Index Terms— periodic interference, adaptive filter, RLS algo-
rithm, mask process, electroretinogram (ERG)

1. INTRODUCTION

PERIODIC interference (also referred to as hum noise),
which originates from commercial alternating-current

(commonly referred as to AC) power sources (50/60[Hz])
or rotating machines, frequently disturbs the measurement
of small signals and causes problems. This issue is partic-
ularly critical when measuring bioelectric signals such as
electroencephalogram (EEG) electrocardiogram (ECG), and
electromyogram (EMG), with electrodes fitted on the surface
of the human body [1], [2].

An electroretinogram (ERG) records the action potential
with respect to light stimulation in the retina [3]. Although
the ERG is an objective index of visual function, there are
cases where the periodic interference included in the signal
presents a significant hindrance, because the response electric
potential is minute and includes the fundamental frequencies
(50/60[Hz]) of commercial AC power sources and its several
harmonic waves in the frequency range [4].
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Because such external noises, as represented by periodic
interference, manifest themselves at practically the almost
same frequency and phase (common mode), a differential
amplifier circuit for instrumentation, with a high common-
mode rejection ratio (CMRR), is typically used for measuring
bioelectric signals [1]. The incidence of common potential,
occurring with periodic interference induced at the positive
and negative inputs, becomes less frequent in some cases,
depending on the nonuniformity of attachment impedances at
individual electrodes, the conditions of the body’s interiors,
and the measurement environment. In some cases, such dif-
ferences are amplified and retained as significant noise, which
requires meticulous cleansing of the skin and improvement
of the surrounding environment [2]. However, these responses
can often be difficult to achieve at medical sites owing to time
and space constraints.

There are many procedures associated with ordinary ERG
tests that involve a contact-lens-type electrode fitted over the
cornea, such as the administration of anesthetic eye drops in
the eye. This can significantly burden both the test subject
and the physician. The possibility of fitting a skin electrode to
the lower eyelid is therefore being considered [5]. However,
skin electrodes offer a poor signal-to-noise (S/N) ratio, making
them unsuitable for clinical applications such as local ERG
tests [6]. If there was a method to sufficiently cancel periodic
interference, then it would be possible to perform ERG tests,
using skin electrodes, on patients who are considered difficult
subjects for administration (including infants and patients who
have just operated on) owing to the impact on the cornea.

The notch filter is commonly used to cancel such periodic
interference, but although this filter cancels components of
specific frequencies, it also distorts signals whose accurate
recording is desired (desired signals). For that reason, the
notch filter has been deemed unsuitable for use in ERG
testing [4]. Because the frequencies and amplitudes of periodic
interference fluctuate and are not constant, it is necessary to
track such changes. Methods involving analog circuits [7] and
the fitting method [8] (involving nonlinear optimization of a
sinusoidal wave model for measured data over a short period of
time) have been proposed for estimating frequencies, phases,
and amplitudes of periodic interference in individual signal
measurements. However, there remain issues on real-time
implementation or treatment of higher harmonic waves. Real-
time noise cancellation is desirable for ERG tests conducted
by a physician, who would perform such tests while verifying
responses from the tested eye.
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Adaptive filters that are driven by algorithms, such as
least mean squares (LMS) [9],[10] and recursive least squares
(RLS) [11], are potential methods for responding to such
needs, but so far no detailed investigations have been con-
ducted on measuring transient signals that rapidly change at a
particular time but then gradually decrease to 0, such as the
pulse-like signal of the ERG.

In this paper, we deduce theoretically that the adaptive
filter generates components that disturb the desired signal
owing to the existence of the desired signal itself, based
on the successive least squares method, which is a common
framework that includes the LMS and RLS algorithms for
an adaptive filter. A serious problem that occurs when the
desired signal is a pulse-like signal will also be pointed out:
the components that work to negate the existence of the desired
signal are manifested as clear vibrating components similar to
periodic interference. Such vibrational components cannot be
reduced by the synchronous addition averaging process.

Furthermore, we propose a mask process that does not
update the filter coefficient during the interval in which the
pulse-like signal is considered to be manifest. Using numerical
simulations, we will show that the cancellation of periodic
interference can be achieved without generating such vibra-
tional components, which are referred to as the self-canceling
components defined in section 2. In order to demonstrate its
effectiveness, the mask process is applied to an actual flash
light ERG.

2. CANCELLATION OF PERIODIC INTERFERENCE WITH
ADAPTIVE FILTER AND ASSOCIATED PROBLEMS

2.1 Periodic interference and adaptive filter

Let us consider a periodic interference u(k), whose frequen-
cies and amplitudes within a time interval of up to a certain
length can be considered to be constants, as

u(k) =
m∑
i=0

Ai cos

(
2π(i+ 1)

f0
fs

k + ϕi

)
(1)

where f0[Hz] is a fundamental frequency of the periodic inter-
ference, and m is the number of higher harmonic waves. Fur-
thermore, the signals, including u(k), treated in this paper are
sampled at fs[Hz] and have discrete time k ∈ {0,±1,±2, · · ·}.

If an appropriate analog process is implemented, and no
aliasing occurs, we should have m ≤ ⌊ fs

2f0
⌋− 1. Furthermore,

Ai and ϕi are, respectively, the ith amplitude and phase of the
ith higher harmonic wave, and are expressed as 0 ≤ Ai,−π ≤
ϕi < π.

On the other hand, let us consider the desired signal to be
s(k). If the periodic interference, with varying amplitude and
phase

nac(k) =
m∑
i=0

Gi cos

(
2π(i+ 1)

f0
fs

k + θi

)
, (2)

(0 ≤ Gi,−π ≤ θi < π)

is added, then the measured signal would be

d(k) = s(k) + nac(k). (3)

Fig. 1. Interference cancelling with adaptive filter

The cancellation of the periodic interference is expressed by
letting the second term on the right-hand side of Equation (3)
be 0. The signal, as given by Equation (1), is employed as
the reference signal. On the other hand, if we apply the qth-
order finite impulse response (FIR) filter with the time-varying
coefficients hℓ(k), (ℓ ∈ {0, 1, · · · , q}), we get

y(k) =

q∑
ℓ=0

hℓ(k)u(k − ℓ). (4)

Then, the residual signal is obtained by subtracting the output
y(k) of the filter above from the main input d(k) given as the
measurement signal:

e(k) = d(k)− y(k). (5)

Assuming that the discrete Fourier transform (frequency trans-
fer function) of hℓ(k)

H(k, φ) =

q∑
ℓ=0

hℓ(k) exp

(
−j2π

φ

fs
ℓ

)
, (6)

where j is considered an imaginary unit, satisfies the following
relationship for all of p ∈ {0, 1, · · · ,m}: |H(k, f0 · (p+ 1))| =

Gp

Ap
̸ H(k, f0 · (p+ 1)) = θp − ϕp ,

(7)

we can then state

e(k) = s(k). (8)

The residual signals will be only the desired signal, and the
periodic interference would be completely canceled. For this to
occur, two coefficients are required for each sinusoidal wave.
Hence, the filter order q must be

2m+ 1 ≤ q. (9)

Furthermore, it is necessary to determine the value of the
filter coefficient in order to satisfy Equation (7). A system
that depends on the properties of the input signals and per-
forms processes with varying filter coefficients successively is
ordinarily referred to as an adaptive filter [11]. The concept
of noise cancellation using such a system is shown in Figure
1. The determination of coefficients based on the successive
least squares method is described below. Because nac(k) and
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y(k) are derived by linearly filtering the reference signal u(k),
if we assume that

v(k) = nac(k)− y(k), (10)

then, based on Equations (3) and (5), we get

e(k) = s(k) + v(k). (11)

The weight sequence w(i) (i ∈ {0, 1, 2, · · ·}), which decays
with index i is applied to the sum of squares of the error to
the present point in time:

J(k) =
∞∑
i=0

w(i)e2(k − i)

=
∞∑
i=0

w(i)
(
s2(k − i) + v2(k − i)

+ 2s(k − i)v(k − i)
)
. (12)

The effective length of w(i) is equivalent to the adaptation
time of the filter. If the third term on the right side is
sufficiently small, in other words, if the correlation between
the desired signal s(k) and v(k) [v(k) is a linearly filtered
signal of the reference signal u(k)] can be ignored then we
get

J(k) =
∞∑
i=0

w(i)e2(k − i) =
∞∑
i=0

w(i)s2(k − i)

+
∞∑
i=0

w(i)
(
e(k − i)− s(k − i)

)2
(13)

[12]. Because the first term on the right-hand side does not
depend on the filter coefficient, Equation (8) is expected to
hold by minimizing the left-hand side. In order to minimize
J(k), we use a condition for the partial differentiation to each
filter coefficient:

∂J(k)

∂hℓ(k)
= 0. (14)

These coefficients can be successively solved as shown in
Equation (15):

hk = R−1
k zk, (15)

where Rk is a symmetric (q + 1) × (q + 1) autocorrelation
matrix of u(k) having elements at the ℓth row and the nth
column (ℓ, n ∈ {0, 1, · · · , q}):

rℓ,n(k) =
∞∑
i=0

w(i)u(k − i− ℓ)u(k − i− n). (16)

Furthermore, the filter coefficient hk and the cross-correlations
zk between d(k) and u(k) are

hk = (h0(k) h1(k) · · · hq(k))
t, (17)

zk = (z0(k) z1(k) · · · zq(k))
t, (18)

where zℓ(k) =
∞∑
i=0

w(i)d(k − i)u(k − i− ℓ), (19)

respectively, and (·)t indicates transposition.

The infinite sums in Equations (16) and (19) are regarded
as a form of convolution between the weight w(k) and signals
formed from products of d(k) and u(k). Consequently, we can
execute successive determinations of hk with finite operations.
For instance, in considering

w(i) = λi, 0 < λ < 1 (20)

the effects of the past are reduced exponentially, but rℓ,n(k)
of Equation (16), and zℓ(k) of Equation (19) can be easily
expressed as, respectively,

rℓ,n(k) = λrℓ,n(k − 1) + u(k − ℓ)u(k − n), (21)
and

zℓ(k) = λzℓ(k − 1) + d(k)u(k − ℓ), (22)

with an infinite impulse response (IIR) filter of the first degree.
The RLS algorithm [11] uses Equation (20) as w(i) and is

an accelerated version of the successive least squares method
expressed by Equation (15) via the inverse matrix theorem. λ
is referred to as the forgetting factor.

Furthermore, by letting

w(i) = δ(i) (23)

where, δ(i) =
{

1 (i = 0)
0 (i ̸= 0)

, (24)

and then introducing the step size parameters based on the
steepest descent principle, we can derive the LMS algorithm
[9],[10].

Because this paper discusses the fundamental properties
of the adaptive filter, we use Equations (15) and (20) as a
basic adaptive algorithm, namely the successive least squares
method with a forgetting factor. This method is equivalent to
the RLS algorithm.

2.2 Self-canceling components

It was described in the previous section that periodic in-
terference can be canceled by minimizing the sum of squares
of the error, using the hypothesis that there is no correlation
between u(k) and s(k). In actual situations, however, w(i)
does not have an infinite length but a finite length or a rapidly
decreasing sequence, in order to ensure adaptability. Owing to
this finiteness of the analysis period, even if there is no cross-
talk from the reference channel to the main input channel [12]
and they are essentially uncorrelated, the components of u(k)
are observed in s(k). Because the adaptive algorithm works to
cancel the components of the reference signal observed in the
main signal, the algorithm may cause problems by generating
components that cancel the desired signal itself.

In this section, we present an example of the numerical
simulation of the problem that occurs during cancellation of
the periodic interference included in the pulse-like signals and
treat it theoretically.

The sampling frequency is set to fs = 1253[Hz], and the
exponential weight and several sinusoidal waves are combined
to form a pulse-like signal s(k). Figure 2(a) shows this
numerically configured signal indicated as a “true signal”
beside the graph. On the other hand, a numerical sample
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Fig. 2. An example of simulation for periodic interference cancellation of a
pulse-like signal using the adaptive filter.

of the periodic interference is configured with sinusoids of
fundamental frequency 50[Hz] and its higher harmonics. We
configured the main input signal d(k) by adding the true signal
configured above and this periodic interference. Figure 2(b)
shows the “main input signal”. Furthermore, a reference input
u(k) that contains harmonic components below 600[Hs](m =
11) with an equal amplitude is also configured.

Applying u(k) and d(k) as inputs to an adaptive filter
given by Equation (15), we executed the periodic interference
cancellation. Figure 2(c) shows the resulting wave form. The
adaptive algorithm has an exponential weight expressed by
Equation (20) (λ = 0.996) as w(i). In the figure, the term
adaptive filter is abbreviated as ADF. The filter order was
set to q = 23, in accordance with Equation (9). Furthermore,
a sufficient period was set for adapting the filter before the
pulse-like signal began.

Although periodic interference of larger amplitudes was
canceled and the effects thereof were considered significant,
the smaller-amplitude vibration components were confirmed
in the second half of the pulse-like signal. These vibration
components may be considered as residual components due to
an excessively large periodic interference. However, because
an exactly identical vibration is confirmed as a result (d)
of operating an adaptive filter without adding the periodic
interference to the waveform of (a), this should be understood
as not being a residue of periodic interference. The attempt to
cancel periodic interference by using an adaptive filter led to
the contrary result of added periodic interference.

In the following, such vibration components are treated
theoretically. For the sake of simplicity, we consider the case of
periodic interference that has only the fundamental frequency
component. That is, by setting m to 0 in the reference signal

of Equation (1), u(k) is given by the following Equation (25):

u(k) = cos(fk) (25)

where f = 2π
f0
fs

, and f ̸= ℓπ, (ℓ ∈ {0,±1,±2, · · ·}).
Furthermore, in order to observe the influence of s(k) alone,
assuming that no periodic interference exists, we get

d(k) = s(k). (26)

That is, we treat the case shown in Figure 2(d). In such a
case, the FIR filter of the conditional Equation (9) regarding
the filter order with q = 1 (number of coefficents is 2) should
be used. If λ is set sufficiently close to 1, Equation (4), which
gives the filter output, can be approximated by

ỹ(k) =

∞∑
τ=0

s(τ)2(1− λ)λk−τ cos(f(k − τ)). (27)

The outline of this derivation is shown in the Appendix.
Equation (27) is the output of a constant coefficient linear
filter having an impulse response of

η(k) = 2(1− λ)λk cos(fk). (28)

Equation (28) is a cosine wave whose amplitude is decreasing
exponentially. Because the amplitude is multiplied by (1−λ),
it becomes smaller while the response time of the filter
becomes longer as λ approaches 1. This means that even when
the periodic interference nac(k) in the measurement signal
d(k) is 0, if s(k) is a pulse-like signal like the ERG, the
damped vibration waveform that has a periodic interference
frequency ends up being added to the residue e(k). Further-
more, because Equation (27) is a convolution operation, when
a pulse-like signal is applied, the cosine wave that has its
phase locked at the point where the pulse-like signal starts
as the origin is subtracted, regardless of the phase of the
periodic interference in the reference signal. For that reason,
in principle, such components cannot be reduced by using the
synchronous addition averaging process. This indicates that
if the number of synchronous addition averaging operations
is increased, then using the periodic interference cancellation
process via an adaptive filter could magnify the error more than
when no adaptive filter is used. In this paper, this is referred to
as self-canceling components, because Equation (28) depends
on the existence of s(k) itself.

The transfer function G(z) from s(k) to e(k) is expressed
as

G(z) =
S(z)− Ỹ (z)

S(z)

= 1− 2(1− λ)(1− λz−1 cos f)

1− 2λz−1 cos f + λ2z−2
, (29)

where S(z) and Ỹ (z) are Z-transforms of s(k) and ỹ(k),
respectively. This signifies that it is a notch filter. Similar
analyses [10], [13], [14] have been performed with the LMS
algorithm when the main input is a stochastic noise. These
results are referred to as the non-Wiener solution. However,
we found no discussion on cases of the RLS algorithm, or its
equivalent algorithm given by Equation (15). Furthermore, the
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vibration components that significantly manifest themselves
immediately following the QRS complex, while canceling
periodic interference in electrocardiograms, have been known
empirically using methods other than the adaptive filter [15],
[16], [17]. However, this has not been dealt with analytically.

3. MASK PROCESS

The self-canceling components expressed by Equation (27)
become smaller as λ approaches 1 (i.e., as the adaptation time
becomes longer). It would be necessary to set the adaptation
time from a few seconds to a little over 10[s], because there
are fluctuations in the frequencies of periodic interference.
In addition, we must consider that the fitting conditions of
electrodes vary owing to blinking or eye movements of the test
subjects during actual ERG tests and when tests are speeded
up. Under such circumstances, the self-canceling components
are believed to reach such significant magnitudes that they
cannot be ignored.

The self-canceling components occur because individual
correlations of Equation (15) are updated in the interval where
s(k) rapidly changes. When the length of such an interval
is sufficiently short with respect to the degree of change in
the properties of the periodic interference, and if the main
component of d(k) up to immediately before the start of
the pulse-like signal is nac(k), and if the filter coefficient is
such that the periodic interference can be canceled in an ideal
manner, then by preventing the updating of correlation in such
an interval, it should be possible to prevent the occurrence of
self-canceling components.

The mask process for not updating the correlations and filter
coefficients, while continuing with the operation of the filter
while the pulse-like signal is sustained, is therefore proposed
to operate in the following manner:

The mask length is set to M [sample], and the starting
time of the pulse-like signal is {τ1, τ2, · · · , τNp}. The inter-
vals between respective time points are sufficiently large in
comparison to M . While in the mask interval, that is, if k
satisfies τi ≤ k ≤ τi + M where 0 ≤ i ≤ Np, rℓ,n(k) and
zℓ(k) of Equation (15) are not updated as

rℓ,n(k) = rℓ,n(k − 1) (30)
zℓ(k) = zℓ(k − 1). (31)

Consequently, the coefficient hk is not updated either. Outside
the mask interval, needless to say, the updating is performed
according to Equations (21) and (22). This mask process
can also be defined in a similar manner for LMS and RLS
algorithms.

4. NUMERICAL SIMULATION

A reduction in the self-canceling components by implement-
ing the proposed mask process is demonstrated in this section,
with numerical examples.

4.1 Effects of mask process

Let us assume an environment where f0 = 50[Hz] and
fs = 1253[Hz], as in Figure 2. In this example, the higher

harmonic number is m = 11, and the reference signal is
configured using components that are given by the respective
parameters of Equation (1) as A0 · · ·A11 = 1, θ0 · · · θ11 = 0.
Furthermore, let the pulse-like signal, without any periodic
interference added as shown in Figure 2(a), be pls(k). The
starting time thereof will be randomly assigned in intervals
that are uniformly distributed in the range 488 to 512[ms].
Using the sequence pls(k − τi) that starts at time τi, (i ∈
{0, 1, · · · , Np}), we formed a desired signal as

s(k) =

Np∑
i=0

pls(k − τi). (32)

Let the respective amplitudes of the cosine wave from Equa-
tion (2) be G0 = 0.33, G1 · · ·G3 = 0.06, G4 · · ·G6 =
0.03, G7 · · ·G9 = 0.012, G10 = G11 = 0.003 , and let
the phase θi be given randomly within (−π, π) to configure
nac(k). Furthermore, in anticipation of stochastic noise such as
circuit noise that occurs while taking measurements, Gaussian
white noise with standard deviation σ = 0.0005 is added to
the main input d(k). In order to evaluate the efficacy of the
periodic interference cancellation, segments of 500[ms] are
extracted from respective stimulus time points τi, with respect
to e(k) as follows:

pls esti(k) = e(τi + k),

where k ∈ D = {0, 1, · · · , ⌊0.5fs⌋}. (33)

This is used to perform synchronous addition averaging:

p̂ls(k) =
1

Np + 1

Np∑
i=0

pls esti(k). (34)

Then the error

Err =

√∑
k∈D

(
pls(k)− p̂ls(k)

)2

√∑
k∈D

pls2(k)

(35)

is derived for comparison.
The errors (logarithmic representation) are shown for their

respective methods, with regard to the number of synchronous
addition averaging operations (logarithmic representation) in
Figure 3. Figure 3(a) shows the result of performing syn-
chronous addition averaging only (without performing periodic
interference cancellation with an adaptive filter), which is
labeled “simple average” in the diagram. Because the phase
of the added periodic interference is random, the graph of the
error fluctuates, but the amount decreases as the number of
additions increases.

Figures 3(b), (c), and (d) are errors for cases where syn-
chronous addition averaging is performed on the signal after
canceling the periodic interference with an adaptive filter
(q = 23) using Equations (15) and (20). The value of λ is
0.996, 0.999, and 0.9996, respectively, and the mask process
has not been performed on any of these three examples. In
cases where the number of synchronous addition averaging
operations is low, the error is small in comparison to case (a),
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Fig. 3. Evaluation of mask process using the error

where no adaptive filter is used. However, this is reversed or
becomes approximately equal within a few times in the case
of (b), several tens of times with (c), and about 100 times with
(d).

It is also evident that, even when the number of synchronous
addition averaging operations is increased, absolutely no
change takes place. This signifies that the magnitudes of
the self-canceling components depend only on the pulse-like
signal and the size of λ, and are unrelated to the periodic
interference.

The error due to the self-canceling components decreases as
λ approaches 1, but there are various restrictions, depending
on the fields of application. For this sampling frequency and
λ = 0.9996, the adaptation time to keep the past influence
to 1% or lower is about 9[s]. In actual ERG tests, it would
not be desirable to set the adaptation time longer than this, as
described at the beginning of Section 3.

On the other hand, the example with λ set to 0.996 and the
mask process implemented for 200[ms] (the“ADF+masking”
shown in the diagram) is (e), which has an extremely small
amount of error in comparison to (a) with respect to all the
number of synchronous averaging operations. The effective-
ness of the approach used in this example is clear.

4.2 Influence of stochastic noise and mask length

In the previous section, errors were evaluated by adding a
Gaussian white noise of σ = 0.0005 to the main input signal,
in order to simulate the stochastic noise. However, there are
cases where an even larger stochastic noise is added.

Adaptive filters that do not perform the mask process output
stochastic signal with respect to the stochastic components
included in the desired signal s(k), because Equation (27) is a
linear filter for s(k). This means that the synchronous addition
averaging process can decrease the magnitude of the stochastic
components even if the process has any synchronous timing.
In this case, consequently, no problems arise. On the other

hand, it is necessary to verify that the mask process does not
result in the generation of components that cannot be reduced
even by using the synchronous addition averaging process.

The error given by Equation (35) for cases where the mask
process is performed is composed of two types of components:

(A) Periodic interference components arising from a deterio-
ration in the accuracy of estimating the filter coefficient.
This is because of stochastic noise that occurred imme-
diately prior to the generation of the pulse-like signal
(immediately before the mask process).

(B) Components of the stochastic noise itself, which are
added to the main input.

It is possible to reduce (B) by performing the synchronous
addition averaging process, using any timing, based on the
aforementioned considerations. It is also presumed that with
(A), the periodic interference will decrease as the number
of synchronous addition averaging operations increases. The
reason is that the influence of the pulse-like signal is not
reflected in the estimation of the filter coefficient because,
from the causality, there is no component in the stochastic
noise that correlates to the pulse-like signal.

Figure 3(f) shows the change in the error for the case
where only the standard deviation of the Gaussian white
noise, added to d(k) under the same condition as (e) of the
same figure, is set to σ = 0.01. The error decreases linearly
as the number of synchronous addition averaging operations
increases. This agrees with the prediction described earlier.
Because the reference signal is the periodic interference, a
mask process has no cancellation effect on the stochastic
noise. However it does not inhibit the essential performance of
the synchronous addition averaging. Therefore, both the mask
process and the synchronous addition averaging can be used
together.

Furthermore, cases where the mask cannot completely cover
the signal may be anticipated in applications where the sus-
tained time of the pulse-like signal is not known in advance, or
where the sustained time may vary for each measurement. In
such a situation, the error due to the self-canceling components
is expected to decrease as the mask length is increased. In
other words, it is desirable to have the best results for the
length of the mask, even if the mask length was not sufficient.
That is, a monotonic decrease in the error is expected with
respect to the increase in mask length.

When the error of stochastic noise becomes larger than
that of the self-cancelling components, the effect of the mask
process will be overcome by stochastic noise. Consequently,
there would exist a certain length such that a larger mask than
the length has no effect in terms of the error, in the situation
where the monotonicity mentioned earlier exists. This also
means that it is possible to determine an adequate mask length
depending on the levels of a given stochastic noise from the
stand point of implementation.

Figure 4(a) shows the error from a case where synchronous
addition averaging is performed on the result of ten instances
of periodic interference cancellation (λ = 0.996) for any mask
length. A standard deviation of the added Gaussian white noise
of σ = 0.0005 is used, and the mask length varies from
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Fig. 4. Error versus mask length and magnitude of stochastic noise

0 to 300[ms]. The change in error can be considered to be
practically monotonic and smooth.

The results of cases where the standard deviation of the
stochastic noise is amplified to σ = 0.01 and σ = 0.1 are
shown in Figures 4(b) and (c), respectively. In cases where
the mask is short, all graphs overlap, but the lower limit for
the error that can be achieved has higher values when the
stochastic noise is larger. On each graph, we observe that
there exists a minimum mask length such that no change
in error occurs. Consequently, such a minimum mask length
would be considered appropriate. Furthermore, Figure 4(d)
shows the error for the case where σ is set to 0.1 and the
number of synchronous addition averaging operations is set to
100 (labeled “average: 100 times” in the figure). It is evident
that, by using a longer mask by increasing the number of
synchronous addition averaging operations, it is possible to
reduce the noise further than the reduction shown in Figure
4(c), whose stochastic noise has the same magnitude.

This suggests that the effect can be improved with long
masks when the stochastic noise is low and a large number
of synchronous addition averaging operation is performed.
Depending on the properties of the stochastic noise, however,
it is conceivable that there would be cases where having
the filter coefficient for sufficiently canceling the periodic
interference immediately before the implementation of the
mask (as described at the beginning of Section 3) is not
satisfied. Further investigation is required to shed light on this
aspect, including issues relating to the actual determination of
mask lengths.

4.3 Verification on spectrum

The effectiveness of periodic interference cancellation in the
frequency domain in cases where the number of synchronous
addition averaging operations is set to one (no averaging
performed) is verified for the various methods here. In order to
ensure that the effect can be seen clearly, no stochastic noise
is added to the main input signal d(k) given in Subsection
4.1. Figure 5(a) shows the power spectrum of d(k) for the
case where an adaptive filter is not used. It is evident that 12
sharp peaks that indicate periodic interference are manifested
on the wide distribution of the essential frequency components

Fig. 5. Effects of the mask process appeared on the spectra

of the pulse-like signal. It can be verified that the self-
canceling components manifest as notches in the periodic
interference frequency in spectrum (b), which occurs when the
periodic interference cancellation process is performed with an
adaptive filter (λ = 0.996, q = 23) without performing any
mask processing on the signal. What is shown in (c), on the
other hand, is the spectrum resulting from the cancellation
performed using an adaptive filter that has the same λ and q,
but with the proposed mask process implemented. No notch
or peak is confirmed in this instance.

5. APPLICATION TO ACTUAL ERG

In this section we demonstrate the effective functioning of
an adaptive filter using the proposed mask process, with an
actual measurement test of ERG using flash light stimuli.

Flash light ERG (also referred simply to as flash ERG),
with eyes adapted to the darkness, is a pulse-like signal that
exhibits a rapid change in potential in the negative direction a
few milliseconds after the stimulus (a-wave). This is followed
by a relatively gradual change to the positive direction (b-
wave), and four to six waves of small oscillatory potential (OP)
overlapping these waves[3]. The magnitude of the respective
components varies depending on the intensity of the flash light
stimulus, but the overall duration is generally approximately
200 to 300[ms]. The amplitude is up to several hundred µVp−p

on the cornea, while on the skin of the lower eyelid it is even
lower (only a fraction thereof).

Thus, the ERG signal is a minute electric potential. In
addition, periodic interference arises from the commercial
alternating-current power source, as well as brain-waves,
myoelectric, and cardiographic signals, and other biosignals.
These are all added to the measured values as noise. For
these reasons, the synchronous addition averaging process for
multiple flash light stimuli is ordinarily performed with an
ERG test.

In this instance, however, we verify a case of a single
instance of the ERG (without the synchronous addition av-
eraging) in order to emphasize the effectiveness of the mask
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Fig. 6. Application to an actual flash ERGs

process.
Figure 6(a) shows the measurement of the response potential

(labeled “measured signal” on the diagram) with respect to
the strong flash light stimulus (time: 0[ms]) with eyes adapted
to the darkness. A contact-lens-type electrode was fitted on
the cornea of a male in his fifties, in an environment where
a significant amount of periodic interference (fundamental
frequency of 60[Hz]) exists. Records of measurements were
taken at a sampling frequency of fs = 1253[Hz], after
implementing a low-pass filter (cutoff frequency of 500[Hz]
and attenuation factor of −80[dB/Oct]). The ERG could not
be verified because it was covered by the periodic interference
of larger amplitudes. The spectrum of the signal (periodogram)
with 16, 384 points, which includes the response interval of
the ERG, is shown in Figure 7(a). The periodic interference
is manifested prominently as a component with acute lines at
a frequency of 60[Hz], as well as odd multiples thereof. This
is considered to be the main input d(k).

Furthermore, the signal acquired directly from the commer-
cial alternating-current power source turned into a short pulse
through analog means at the zero cross-point from negative to
positive. The direct-current portion was canceled, and a low-
pass filter with the same characteristics as the main input was
applied and then sampled as the reference signal u(k). Figure
7(b) shows its spectrum. A small number of peaks due to
aliasing was confirmed, but the components of the fundamental
frequency and the higher harmonic wave had amplitudes that
exceeded 70[dB] from the upper section of the continuous
spectrum of circuit noise, and were approximately equal.

The result of canceling the periodic interference from d(k)
and u(k) by using an adaptive filter (q = 21, λ = 0.996) of
Equations (15) and (20) is shown in Figure 6(b). The periodic
interference was canceled to the extent that the a-wave, b-
wave, and the oscillatory potential can be verified. Although
this effect is considered substantial, it was confirmed that
the vibrational components persist for a long time after the
response. On the basis of the way they are presented, it is

Fig. 7. Spectra of signals appeared in processing the actual ERGs

difficult to determine whether these vibrational components
are part of the ERG or are other noises. Because notches are
confirmed at 60[Hz] and 120[Hz] in the spectrum of this signal
(Figure 7(c)), the vibrational components are believed to be
self-canceling components due to the ERG.

This example of the ERG indicates that the interval in which
a rapid change occurs practically ends 200[ms] after the flash
light stimulus. It is difficult to believe that the characteristics
of the periodic interference changed during this interval. An
attempt was made here to cancel the periodic interference
with an adaptive filter (λ = 0.996) having a mask interval at
the time point of 200[ms] from the flash light stimulus pulse
emission. Figure 6(c) shows the results, and reveals that the
vibration components that existed in (b) of the same figure
had disappeared.

In order to clarify this point, a signal derived by subtracting
(c) from the signal of (b) is shown in (d) of the same figure.
Figure 6(d) shows the extraction of the vibration with a
fundamental frequency of 60[Hz] that appears from where the
ERG starts. This can be considered the self-canceling compo-
nents that were extracted and canceled by the proposed mask
process. No notch could be confirmed on the spectrum (Figure
7(d)) of the signal that resulted from the implementation of the
mask process (Figure 6(c)). In order to clarify this even further,
the spectrum of (d) was subtracted from that of (c) as well,
and shown in (e). It was possible to verify that notches existed
on the spectrum of (c), even on harmonic waves of 180[Hz]
and higher. This revealed that the self-canceling components
had been canceled effectively.
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6. CONCLUSIONS

The existence of self-canceling components triggered by a
desired signal was demonstrated from a theoretical perspective.
This was based on the formula of the successive least squares
method, a fundamental format of the adaptive algorithm,
which was used to cancel periodic interference by using an
adaptive filter. This paper clarified the danger of the error
due to the self-canceling components becoming larger with
a larger number of synchronous addition averaging operations
(compared to instances when the adaptive filter is not used) in
cases where the desired signal is a pulse-like signal. A mask
process, which involved no updating correlations and filter
coefficients in intervals where the pulse-like signal persisted,
was proposed. The effective cancellation of the self-canceling
components was verified through a numerical simulation, as
well as with an ERG that was actually measured.

Furthermore, the mask process does not degrade the syn-
chronous addition averaging process, even when stochastic
noise is included, and hence the combined use of these two
processes is possible. Because the error decreases monotoni-
cally as the mask is extended, it was confirmed that the effec-
tiveness of the mask process increases in environments where
a larger number of synchronous addition averaging operations
can be performed and the stochastic noise is small. Analyses
from a theoretical perspective, as well as determination of the
mask length, are necessary to clarify these aspects.

The ERG was utilized as an application example of the mask
process in this paper, but applications can be considered for
a variety of other fields. In the analyses of evoked potentials,
for example, the existence of periodic interference is believed
to affect the estimation of wave parameters [18], and the
proposed method is considered to be applicable. The proposed
method is also expected to be in the measurement of impulse
responses, such as in communication systems.

Periodic interference arising from the display units of
information equipment, as well as rotating machinery such
as pumps, has frequencies that are different from those of
commercial power sources. In such cases, although acquiring
reference signals would be difficult, adaptive filters can be
used by generating an alternative reference signal based on
an appropriate frequency analysis of periodic interference
included in the main input signal only. Even in such cases,
self-canceling components may be generated, and using the
proposed mask process can be expected to improve perfor-
mance.

The mask process, on the other hand, cannot be used when
the pulse-like signal occurs frequently or when the desired
signal is stochastic. In the ERG test, for example, the test
referred to as “flicker,” whose stimuli consist of a flash light
train with a high frequency, is performed. When the mask
process is applied in such cases, the masks overlap each other
while the stimuli continue, and no updating will be performed.
This makes tracking the changes to the characteristics of the
periodic interference inconvenient or infeasible. The same is
true for sustained stochastic signals, such as EEG or myoelec-
tricity. In the future, it will be necessary to consider methods
that do not involve the mask process for such signals.
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APPENDIX
DERIVATION OF EQUATION (27)

Consider the individual elements of Equation (15). First,
r0,0(k) of Rk is derived by

r0,0(k) =

∞∑
i=0

λi cos2(f(k − i))

=

∞∑
i=0

λi
(
1

2

(
ejfke−jfi + e−jfkejfi

))2

=
1

2

∞∑
i=0

λi +
ej2fk

4

∞∑
i=0

λie−j2fi

+
e−j2fk

4

∞∑
i=0

λiej2fi

=
1

2(1− λ)
+

ej2fk

4(1− λe−j2f )
+

e−j2fk

4(1− λej2f )

=
1

2(1− λ)
+

cos(2fk)− λ cos (2f(k + 1))

2(1− 2λ cos(2f) + λ2)

=
1

2(1− λ)
+

cos(2fk)− λ cos (2f(k + 1))

2((λ− cos(2f))2 + sin2(2f))
. (A·1)

Considering a situation where λ approaches 1, the second
term on the right side is f ̸= ℓπ, (ℓ ∈ {0,±1,±2, · · ·}), and is
therefore finite, whereas the first term increases without limit,
and the following approximation holds:

r0,0(k) ≈
1

2(1− λ)
. (A·2)

Similarly, we have the following approximations:

r0,1(k) = r1,0(k)

=

∞∑
i=0

λi cos(f(k − i)) cos(f(k − 1− i))

=
cos f

2(1− λ)
+

cos(f(2k − 1))− λ cos (f(2k + 1))

2(1− 2λ cos(2f) + λ2)

≈ cos f

2(1− λ)
(A·3)

r1,1(k) =

∞∑
i=0

λi cos(f(k − 1− i)) cos(f(k − 1− i))

=
1

2(1− λ)
+

cos(2f(k − 1))− λ cos (2fk)

2(1− 2λ cos(2f) + λ2)

≈ 1

2(1− λ)
. (A·4)

Using δ(i) defined by Equation (23), Equation (26) can be
expressed as

d(k) = s(k) =
∞∑
τ=0

s(τ)δ(k − τ). (A·5)

Thus the respective elements of zk on the right-hand side will
be

z0(k) =

∞∑
i=0

λi
( ∞∑

τ=0

s(τ)δ(k − τ − i)
)
cos(f(k − i))

=

∞∑
τ=0

s(τ)λk−τ cos(fτ) (A·6)

z1(k) =

∞∑
i=0

λi
( ∞∑

τ=0

s(τ)δ(k − τ − i)
)
cos(f(k − 1− i))

=

∞∑
τ=0

s(τ)λk−τ cos(f(τ − 1)). (A·7)

Using these results, and by solving Equation (15), the approxi-
mation solution of the filter coefficients h0(k), h1(k) are given
as

h̃0(k) =

∞∑
τ=0

s(τ)
2(1− λ)

1− cos2 f
λk−τ

(
cos(fτ)

− cos f cos(f(τ − 1))
)

(A·8)

h̃1(k) =

∞∑
τ=0

s(τ)
2(1− λ)

1− cos2 f
λk−τ

(
− cos f cos(fτ)

+ cos(f(τ − 1))
)
. (A·9)

The approximation solution for the filter output given by
Equation (4), therefore, becomes

ỹ(k) = h̃0(k) cos(fk) + h̃1(k) cos(f(k − 1))

=

∞∑
τ=0

s(τ)2(1− λ)λk−τ cos(f(k − τ)). (A·10)
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