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ABSTRACT

The intercalibration of measurements collected from various sensors deployed on-

board the satellites of constellation systems is crucial for ensuring reliability and

consistency among the collected big data sets. One of the factors that introduces

relative errors between the measurements collected from any pair of sensors is the

sensor-specific spectral response function (SRF). Differences between the SRFs of

distinct sensors introduce inconsistencies between two measurements, known as the

wavelength effect. This study focused on the wavelength effect in the spectral vegeta-

tion indices (VIs) used in a wide range of interdisciplinary studies. The relationship

between the VIs obtained from two different SRFs was derived using an analytical

approach based on an expression for the relationship between red and near-infrared

reflectances, called soil isolines. Soil isolines often contain a singular point on a dark

soil background. A derivation technique was introduced to circumvent difficulties

associated with singularities. The resultant soil isolines were represented by power

series of a common parameter. The derived soil isoline was extended by employing a

two-band linear mixture model, in which the fraction of vegetation cover was explic-

itly considered as a biophysical parameter. The differences between the soil isolines of

the fully covered and partially covered cases were explored analytically. A set of nu-

merical experiments was conducted using coupled leaf and canopy radiative transfer

models. The numerical results revealed that the accuracy of the soil isoline increased

with the truncation order, thereby confirming the validity of the derived expressions.

Finally, this study introduced a technique for deriving the relationship between the

VIs obtained from two sensors using soil isoline equations to describe the full canopy

case. The derivation proceeded using a parametric form of the soil isoline equations.

The derivation steps were explained conceptually, then the conceptual steps were cast

in a practical derivation by assuming a general form of the two-band VI. Finally, the

derived expressions were demonstrated numerically using a coupled leaf and canopy

radiative transfer model. The derived expressions and numerical results suggested

that the relationship between the VIs measured at different wavelengths varied with

the soil reflectance spectrum beneath the vegetation canopy. These results indicated

that caution is required when retrieving inter-sensor VI relationships over regions

consisting of soil surfaces having distinct spectra.

xiv



CHAPTER I

Introduction

1.1 Satellite Constellation System

Developing solutions to global terrestrial environmental problems requires inte-

grated knowledge gleaned from interdisciplinary fields as well as international co-

operation. The fifth synthesis report of the Intergovernmental Panel on Climate

Change (IPCC) stated that climate change is one of the most pressing challenges

of our time[1]. This global problem can only be addressed through international

cooperation on mitigation and adaptation[2]. Atmospheric greenhouse gas concen-

trations, which have steadily increased since the industrial revolution, are directly

related to anthropogenic emissions and a decrease in the forested areas throughout

the world. A reduction in anthropogenic CO2 emissions should effectively mitigate

climate change. The Paris agreement on reducing CO2 emissions and Reducing Emis-

sions from Deforestation and forest Degradation in developping countries (REDD)[3]

for the preservation of the environment constitute significant steps toward interna-

tional cooperation. In addition to the actions needed to mitigate climate change, the

adaptation to risks arising from climate-related impacts plays an important role in

ensuring safety in our future[1]. One of the most effective approaches to monitoring

the Earth’s environment involves satellite remote sensing activities. Landsat series at

a medium spatial resolution have provided a long-term data record of the Earth over

the past 40 years at a temporal resolution of 16 days[4, 5]. One approach to enhancing

the frequency of the revisit cycle involves using spectral imaging radiometers with a

low spatial resolution[6–8]. NASA’s moderate resolution imaging spectroradiometer

(MODIS) onboard the Terra and Aqua satellites exemplifies the data collected at a

lower resolution than the Lansat series, which has a spatial resolution of 250 m. The

MODIS data provide a daily data product[9].

There is a trade-off between the timing of a revisit cycle and the spatial resolution
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of satellite remote sensing images, which is a problem that must be addressed in the

field of environmental monitoring. Although frequent observations over the long term

are needed to enact adaptive remedies on the global scale, earth observations collected

using a single satellite do not meet the technical requirements for such observations.

In fact, the data density with respect to the time series is important for data analysis

and improving our understanding of the dynamic earth environment. Efforts directed

toward visualizing the geophysical parameters of earth support advances in remote

sensing technologies[10–12]. Formation-based multiple satellite remote sensing sys-

tems (satellite constellation systems)[13, 14] enhance the frequency and accuracy of

observations and overcome problems associated with indistinct single satellite remote

sensing images. Low-cost small satellite platforms that ease costs play an impor-

tant role in generating constellation systems that dramatically increase observation

opportunities[15].

Although constellation systems increase the observation frequency and are advan-

tageous for data analysis, further problems related to data consistency exist: the data

product depends on the sensor specifications. A variety of data product types from

different instruments are available and yield a range of relative errors when compared.

Intercalibration is a method for rectifying inconsistencies in the data products caused

by various factors[16]. This study focused on wavelength effects in data products, as

described in the following sections.

1.2 Spectral Vegetation Index (VI)

Optical remote sensing applications that use solar radiation can estimate the ge-

ographical distributions of several types of features on the Earth’s surface[17]. The

reflectance spectrum ρλ at a particular wavelength λ may be estimated as arising

from a target feature[18, 19] expressed as

ρλ =
πLλd

2

Lin,λ cos(θs)
, (1.1)

where Lλ and Lin,λ are the detected radiance and mean exoatmospheric solar irra-

diance, d and θs are Earth-Sun distance in astronomical units and the solar zenith

angle, respectively.

Spectral indices (SI)[20, 21] derived from two or more reflectance spectra are useful

for analyzing remotely-sensed data because their use is simpler than solving the inver-

sion problem of the radiative transfer model[22–24]. For example, spectral vegetation

indices (VIs) are derived using knowledge curated in interdisciplinary environmen-
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tal study fields[25–35]. In general, two-band VIs are designed as a function of two

reflectances in the visible red and near-infrared (NIR) regions,

v = f(ρred, ρNIR), (1.2)

where v, ρred, and ρNIR are the VIs, reflectances in the red, and reflectances at NIR

wavelengths, respectively.

“Vegetation Indices (VI) are optical measures of the vegetation canopy‘ green-

ness’, a direct measure of the photosynthetic potential resulting from the composite

property of the total leaf chlorophyll, leaf area, canopy cover, and structure.”[36].

Thus, VIs represent a composite function of various vegetation parameters, including

the leaf area index (LAI)[37], fraction of vegetation coverage (FVC)[38], and fraction

of absorbed photosynthetically active radiation (FAPAR)[39], in addition to parame-

ters unrelated to vegetation, such as the soil background[29, 40] and atmosphere[41,

42], with which photons from the Sun interact prior to reaching a detector. Because

VIs are affected by the soil and atmosphere, researchers have investigated these effects

in detail[43–45] and have developed algorithms for applying the VI data products[46].

1.3 Wavelength Effect

The spectral response function (SRF), a specification parameter for each sensor,

must be managed during integration of the VIs[47]. Target reflectance spectra ρλ are

convoluted with the SRF,

ρΛ =

∫
ρλLin,λΛλdλ∫
Lin,λΛλdλ

, (1.3)

where ρΛ is the estimated reflectance spectrum obtained from a target reflectance

spectrum ρλ when detected by a sensor with an SRF of Λλ. Figure 1.1 shows four

types of SRFs characteristic of red and NIR bands. As shown in the figure, the SRFs

of the red and NIR sensors were distinct. In real cases, sensor degradation in space

post-launch[48] introduces further spectral effects.

The differences between two SRFs, Λa
λ and Λb

λ from sensors-a and -b, may cause

those between the obtained reflectances ρΛa and ρΛb as follows. If Λa
λ ̸= Λb

λ, then

ρΛa ̸= ρΛb . The inconsistencies obtained from a single data product are called the

“wavelength effect”[49]. The wavelength effect in the reflectances is propagated in

3
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Figure 1.1:
Four sensor spectral response functions (SRFs) associated with red and
near-infrared (NIR) bands: Blue, black, red, and green lines correspond to
the GOSAT-CAI, NOAA-AVHRR/3, TERRA-MODIS, and LANDSAT7-
ETM+ SRFs, respectively. The solid line represents the red SRF, and
the dashed line represent the NIR SRF.

the VIs due to the high intensities of the reflectance data products [50].

va ̸= vb (1.4)

Here, va and vb correspond to the VIs obtained from the SRFs of different sensors, −a
and −b, respectively. The relative error between the two VIs obtained from different

SRFs could be reduced by applying intercalibration methods.

1.4 Intercalibration of Spectral Vegetation Indices

The primary purpose of an inter-calibration process is to minimize biases caused

by differences in the sensor specifications, such as, but not limited to, the spectral

response functions (wavelength effect)[47, 51–53], the spatial resolution[38, 54–56],

the illumination geometry[57, 58], differences among the absolute calibrations of the

systems[59], the algorithms used for parameter retrievals, and the atmospheric cor-

rection schemes[60]. Significant efforts have been devoted to understanding the mech-
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anisms underlying such complex effects[61, 62].

The inter-calibration of radiances and/or reflectance spectra obtained from two

similar instruments has been conducted[49, 50, 63], and several techniques have been

proposed to minimize certain bias variations among the sensors[49, 51, 52]. The differ-

ences among reflectance spectra obtained from different sensors have been examined

using images acquired nearly simultaneously[64–66]. The outputs from one sensor

have been plotted against the corresponding outputs from other sensors to character-

ize the biases, to some extent[67, 68]. These studies often reach similar conclusions,

for example, that the relationship (or, rigorously, the coefficients that describe the

relationship) between two VIs varies from site to site[50, 66, 69]. Few theoretical ex-

planations of this land cover dependence have been provided to explain the empirical

evidence. This study attempts to address the need for an explanation.

The inter-calibration studies in the land characterization discipline have often

selected the VI as an example of the satellite data products[70–75]. Because the VI

has been used as a proxy measure for certain biophysical parameters, the impacts of

systematic errors due to differences in the band configurations may be propagated into

downstream models. Certain widely used indices, such as the Normalized Difference

Vegetation Index (NDVI)[76], can contribute to such model biases[77–80]. Thus, a

close examination of VI measures presents a meaningful step toward algorithmically

reducing biases in data.

A satellite constellation system constructed from a collection of sensors must be

analyzed to understand its system-specific wavelength effect. For example, the wave-

length effect in a set of 20 small satellites in a constellation system is characterized

by the intercalibration coefficients associated with the 20C2 = 190 satellite pairs.

Unchecked, the wavelength effect can undermine calculations based on the data prod-

uct of these valuable constellation systems. This research focused on the independent

wavelength effect by deriving the relationships among the VI values of different sen-

sors.

Our discussion is limited to investigations of the relationships among the VI val-

ues of different sensors. One difficulty encountered in this investigation involved the

selection (and often identification) of a model that could provide a set of reflectance

spectra under any desirable conditions. In any investigation based on numerical mod-

els, this selection depends simply on the parameter range covered by the model. The

availability of convenient analytical models is limited; therefore, we sought to ex-

plore the analytical relationships, expressed as isoline equations, between reflectances

collected at two different wavelengths[29, 81–83].

An isoline equation can be defined as the relationship between the reflectances

5



measured at two wavelengths under certain conditions,

ρλ1 = fiso(V, ρλ2), (1.5)

where ρλ1 and ρλ2 are the reflectances measured at different wavelengths, for example,

the red and NIR reflectances, and fiso is a function of ρλ2 for some choice of parameter

V . The inverse problem of the isoline equation may be related to the SI,

V = f−1
iso (ρλ1, ρλ2). (1.6)

Isolines encompass the wavelength effects in the reflectance spectral subspace detected

by each sensor. Recalling that the wavelength effect of a VI results from the measured

reflectances, an analytical expression for an isoline should link the structure of the

wavelength effect in the VI. In fact, vegetation isolines introduce several advantages

into investigations of the VI relationships, as discussed elsewhere[84, 85].

This paper focuses on soil isolines in the red and NIR reflectance subspace[86, 87].

Soil isolines are orthogonal to the vegetation isolines because the soil isoline is defined

as a set of reflectance spectra attributed to a certain soil reflectance spectrum. The

reflectance spectra on a given isoline result from a constant soil reflectance spectrum

characterized by a unique set of soil optical properties. Note that the concept of

a soil isoline differs from that of a vegetation isoline. Vegetation isoline equations

are models developed mainly based on parameters related to vegetation, whereas soil

isoline equations are modeled from soil variable inputs. The derivation of soil isoline

equations permits a mathematical analysis of the data products, such as the VIs.

1.5 Objectives

The objective of this study was to derive the inter-sensor VI relationships using

an analytical form of the soil isolines. Two subgoals were identified in this work: (1)

the derivation of soil isoline equations, and (2) the derivation of inter-VI relationships

based on the derived soil isoline equations.

I began by deriving the soil isoline equations in the red-NIR subspace by intro-

ducing an affine transformation and polynomial fit of the reflectance subspace. In

Chapter 2, an algorithm describing the soil isoline is derived under a homogeneous

fully-vegetated target pixel. Note that full canopy coverage conditions must be re-

laxed because satellite data include pixels constructed from a variety of land cover

types, producing a mixel. I next introduced an extension of the spatial regularization

by fusing the linear mixture model discussed in Chapter 3. The derived soil isoline
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equations were extended to yield a representation applicable to mixel data in satellite

images. Numerical experiments were conducted to validate the derived results.

Chapter 4 proposes a deductive derivation method for applying the derived soil

isoline equations to VIs. The derived expression could be described using a polyno-

mial form by truncating the equation and inter-VI relationship as an approximation.

Numerical experiments were conducted to validate and analyze the derived inter-VI

relationship. The uncertainties propagated by the sensor-specific signal-to-noise ratio

(SNR) were compared to derive the translation error associated with the proposed

inter-VI relationship. Finally in Chapter 5, conclusions drawn from the wavelength

effect present in the VIs derived from the soil isoline-based intercalibration methods

are summarized.
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CHAPTER II

Theoretical Background for the Soil Isoline

Equations in the Red–Near-infrared Reflectance

Subspace

2.1 Introduction

Parameter retrieval algorithms based on remotely sensed land surface reflectance

data often involve band algebraic manipulations and produce environmental data

records such as vegetation biophysical parameters or soil optical properties. Some

algorithms use an intermediate proximity measure, e.g., the spectral vegetation index

(VI), either explicitly or implicitly[29, 88, 89]. The performances of the data records

depend somewhat on the functional forms of VIs; hence, research in this field has

extensively explored the development and improvement of functional forms over the

last few decades[20, 29, 76, 81, 88, 90]. Numerous VI models have been developed

through these efforts[25–35].

VI models may be categorized systematically according to the concept of the

‘isoline’ used to develop and analyze the VI[76, 81, 82, 84, 90–95]. By limiting our

discussion to VI models of the red and NIR reflectance space, two main types of isoline

have been recognized: the vegetation ‘index’ isoline (VI isoline) and the vegetation

‘biophysical’ isoline (the latter is denoted the ‘vegetation isoline’ in this study)[29, 81,

82, 84, 94, 95]. The VI isoline represents a set of red and NIR reflectance spectra that

produce a single VI value, meaning that the VI isoline depends only on the VI model

equation. This point is illustrated in Fig. 2.1(a) using the normalized difference VI

(NDVI) as an example. The vegetation isoline (Fig. 2.1(b)), on the other hand,

describes a group of reflectance spectra that belong to a fixed set of biophysical

parameters and structural properties, such as the leaf area index (LAI), fraction of

vegetation cover (FVC), and leaf angle distribution. The vegetation isoline can be
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simulated numerically using a radiative transfer model of the vegetation canopy[96–

99]. Note that these two isolines (VI isoline and vegetation isoline) have no physical

relationship, meaning that the two are obtained mutually independently. Also note

that the ultimate goal of the VI development effort may be understood as an effort

to identify a VI model equation that yields VI isolines that agree perfectly with the

vegetation isolines[29, 81, 82, 84, 94, 95]. Several studies suggest that the discrepancies

between the VI isoline and the vegetation isoline indicate performance losses in the

VI model as a result of internal and external sources of errors, including the influence

of soil brightness changes beneath the vegetation canopy[31, 33, 40, 91, 100, 101].

Formulations of the vegetation isoline have been developed in several previous

studies[29, 82, 84, 94] and have been used to develop VI models and analyze VI

errors[25–35]. The isoline equations have been used directly to retrieve the LAI[102]

and FVC[83] from a remote sensing data set. In recent years, the isoline equation,

which describes the relationship between the red and NIR reflectances, has been

used to cross-calibrate the VI products obtained from multiple sensors[47, 74, 84, 85,

103]. These activities clearly indicate that the concept of the isoline has provided

rich information and useful tools for a variety of investigations while significantly

advancing research in this field.

Isolines are not limited to descriptions of biophysical properties. An alternative

to the vegetation isoline is the soil isoline, which represents a group of reflectance

spectra produced from a constant soil surface. Note that a soil isoline is totally

different from the concept of the ‘soil line’[93], which is a zero vegetation isoline. In

other words, the soil line is a vegetation isoline describing the particular case of zero

vegetation, whereas the soil isoline is a set of spectra obtained under a constant set

of soil reflectance spectra, in view of various biophysical parameters. This point is

illustrated in Fig. 2.1(c).

Extensive efforts have been devoted toward studies of vegetation isolines; however,

soil isolines have not been fully investigated. The present study aims to contribute to

this area of research. Singularities at relatively dark soil surfaces present a significant

barrier to modeling soil isolines using a simple polynomial form [104]. By limiting

our discussion to the red-NIR reflectance space under low soil reflectances, the soil

isoline may be approximated as parallel to the NIR axis. As a result, some of the

polynomial coefficients are extremely large. Such singularities must be circumvented

in any soil isoline model. A numerical example of this situation is discussed in the

next section.

The concept of the soil isoline is not new. Soil isolines have been introduced and

routinely used as a conceptual tool on various occasions to explain band manipulation
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algorithms and their performances in the presence of external sources of errors[29, 81,

86, 87, 105–110]. These concepts have not been fully investigated, however, nor have

they been developed analytically to date. Formal derivations of soil isoline estimation

algorithms and the accuracy of such approaches when applied to truncated higher-

order terms must be explored in anticipation of soil isoline applications. This study

attempts to address these needs.

Three objectives have guided this study. First, a formal derivation of soil isoline

equations with an arbitrary level of accuracy is introduced. Second, a technique for

approximating the analytical representation is described. This approximation is more

amenable to applications than the analytical expression. Finally, the validity of the

derived relationship is explored from a fundamental physics point of view.
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Figure 2.1:
Illustration of the VI isolines (a), vegetation biophysical isolines (b), and
soil isolines (c). The concept of the soil line is illustrated in (b), and (c)
illustrates a zero vegetation isoline.
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2.2 Difficulties Associated With Modeling Soil Isolines Using

Polynomial Fitting Approaches

The difficulties associated with modeling soil isolines were briefly mentioned above.

An illustrative numerical example of a soil isoline modeled using a second-order poly-

nomial is described here. In this model, the soil isoline is expressed in terms of the

relationship between the red (ρr) and NIR (ρn) reflectances according to

ρn ≈ k0(Rs) + k1(Rs)ρr + k2(Rs)ρ
2
r, (2.1)

where k0, k1, and k2 represent the polynomial coefficients.

A reflectance spectrum (ρr, ρn) may be numerically simulated using the radiative

transfer model PROSAIL[99]. During the simulation, only two parameters are varied:

LAI and the soil reflectance of the red band Rs. Because a soil line was assumed here,

the soil reflectance of the NIR band was uniquely determined based on the soil line

equation from the red reflectance Rs. For this reason, the NIR reflectance of the

soil surface was not explicitly introduced in this study. An isoline was numerically

simulated by setting the soil reflectance Rs to a fixed value, meaning that the LAI was

the only variable parameter used to optimize each soil isoline in this example. After

simulating each soil isoline (under a constant value of Rs), a set of three coefficients

(k0, k1, and k2) was obtained through polynomial fitting approaches. These steps

were repeated for various values of Rs to obtain the coefficients ki as a function of

Rs. Figure 2.2 shows a plot of the coefficients ki as a function of Rs. As shown in the

figure, the coefficient k2 assumed extremely high values at low values of Rs, which

prevented the development of accurate polynomial models. These difficulties arose

from the fact that some soil isolines in dark soils were almost parallel to the NIR axis.

The reflectance axis may be rotated through an angle to circumvent these difficulties.

The next section provides a stepwise derivation of a soil isoline equation designed to

avoid these difficulties.

2.3 Parametric Representation of the Soil Isoline Equation

2.3.1 Assumptions and Transformation

The derivation begins with the assumption of a linear soil line, represented by

Rsn = s1Rsr + s0, (2.2)
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Figure 2.2:
Variations of the polynomial coefficients k0, k1, and k2 used to approxi-
mate soil isolines in the red and NIR reflectance space. Each soil isoline
was simulated for a fixed soil reflectance Rs. The coefficients were then
obtained numerically from a polynomial fit of the simulated soil isolines.
The coefficients as a function of Rs are plotted in the figure. Note that the
coefficients k2 approached extremely high values, indicating the presence
of a singularity at low values of Rs.

where s1 and s0 are the slope and offset, respectively.

In the derivation of the soil isoline equation, the original reflectance subspace was

shifted and rotated through a certain angle to avoid the singularity shown in Fig.

2.2. The original coordinate was shifted to set the intersection between the Y-axis

and the soil line to be the origin of the transformed subspace. The rotation angle

was identical to the slope of the soil line (θ in radians). The transformation could be

expressed as

ρρρ′ = T (−θ)(ρρρ− µµµ), (2.3)

where T represents a rotation matrix, and ρρρ and ρρρ′ are the reflectance spectra before

and after the transformation, respectively, in the red and NIR reflectance space

ρρρ = (ρr, ρn)
t, (2.4)

ρρρ′ = (ρ′r, ρ
′
n)

t. (2.5)
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The vector µµµ shifted the X-axis by an amount equal to the soil line offset,

µµµ = (0, s0)
t. (2.6)

Because the axis was rotated through an angle between the soil line and the X-axis,

θ was defined by the soil line slope s1 as

θ = arctan(s1) (−π/2 < θ < π/2). (2.7)

Finally, the relationships between the reflectances before and after the transformation

became

ρ′r = cos(θ)ρr + sin(θ)(ρn − s0), (2.8a)

ρ′n = − sin(θ)ρr + cos(θ)(ρn − s0). (2.8b)

The NIR reflectance in the transformed reflectance space, Eq. (2.8b), played an

important role in this study. The NIR reflectance assumed a form similar to that of

a vegetation index known as the weighted difference vegetation index (WDVI)[28].

This result could be understood by rearranging Eq. (2.8b) to give

ρ′n = cos(θ)(ρn − s1ρr − s0). (2.9)

This model and the WDVI model are distinguished by the factor cos(θ) and the

offset −s0. Because both the factor and the offset are constant values, the functional

behavior of ρ′n is essentially identical to that of the WDVI (V ), which is defined as

V = ρn − s1ρr. (2.10)

This study used ρ′n as a common parameter during the derivation of the soil isoline

equation. The common parameter yielded behavior indistinguishable from that of

the WDVI, and the soil isoline equation was expected to be strongly correlated with

biophysical parameters, such as the LAI. The validity of the choice of this parameter

may be understood intuitively by recalling that a major source of variation in the soil

isoline is the biophysical parameters. (A soil isoline is obtained under conditions of a

fixed soil profile.)
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Figure 2.3:
Illustration of the soil isolines obtained after applying a space transfor-
mation to fit the original red axis to the soil line. The x- and y-axes were
identified with ρ′n and ρ′r, respectively.

2.3.2 Polynomial Model in the New Reflectance Space

The next step of the derivation involved modeling the relationship between ρ′r and

ρ′n. A simple polynomial representation was used for this purpose. ρ′r was modeled

using a power series of ρ′n,

ρ′r =

mp∑
i=0

pi(Rs)ρ
′i
n +O(ρ′n

mp+1
), (2.11)

where mp and pi represent the order of the polynomial and the coefficients of the i-th

order term. Rs indicates the soil reflectance. This relationship could be approximated

to an arbitrary order of accuracy by selecting a polynomial based on an orthogonal set

of functions, such as the Chebyshev polynomials. Therefore, this part of the modeling

process did not reduce the accuracy of the model. The first term on the right-hand

side of Eq. (2.11) is defined as the function fmp(Rs, ρ
′
n) and will be discussed further

later in this study,

fmp(Rs, ρ
′
n) =

mp∑
i=0

pi(Rs)ρ
′i
n. (2.12)

15



0.05 0.15 0.25 0.35

-2

0

2

4

Red Soil Reflectance

C
o
e
f
f
i
c
i
e
n
t

 

 

p

0

(R

s

)

p

1

(R

s

)

p

2

(R

s

)

Figure 2.4:
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isolines using second-order polynomials as a function of the soil reflectance
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I was interested in examining the variations in pi as a function of the soil re-

flectance Rs. The parameter pi varied smoothly over a small range of values, unlike

the polynomial fit results obtained from the original reflectance space, as described

in Fig. 2.2. The coefficients pi were obtained numerically by assuming a second order

polynomial,

ρ′r ≈ p0(Rs) + p1(Rs)ρ
′
n + p2(Rs)ρ

′2
n . (2.13)

Figure 2.4 plots the the polynomial coefficients pi. The figure indicates that the

coefficients did not feature singularities, such those described in Fig. 2.2. Unlike

the fitting results obtained on the original space (Fig. 2.2), all coefficients varied

smoothly as a function of Rs and remained relatively stable with a small variance

(Fig. 2.4).

2.3.3 Parametric Representation of the Soil Isoline

Equation (2.11) represents a soil isoline in the transformed reflectance space. A

parametric representation of the soil isoline in the original reflectance space was ob-
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tained simply by inverting the transformation

ρρρ = T (θ)ρρρ′ + µµµ. (2.14)

Prior to solving this relationship, ρ′r was replaced with the derived soil isoline

equation

ρρρ′ =
(
fmp(Rs, ρ

′
n) +O(ρ′n

mp+1
), ρ′n

)t
, (2.15)

where fmp(Rs, ρ
′
n) corresponds to a soil isoline function in a rotated reflectance space,

described by a polynomial of order mp.

Equations (2.14) and (2.15) describe a system of soil isoline equations derived

using the common parameter ρ′n,

ρr = cos(θ)fmp(Rs, ρ
′
n)− sin(θ)ρ′n + cos(θ)O(ρ′n

mp+1
), (2.16a)

ρn = sin(θ)fmp(Rs, ρ
′
n) + cos(θ)ρ′n + s0 + sin(θ)O(ρ′n

mp+1
). (2.16b)

Substituting Eq. (2.12) into the above equations yields the following form:

ρr =

mp∑
i=0

ai(Rs)ρ
′i
n + cos(θ)O(ρ′n

mp+1
), (2.17a)

ρn =

mp∑
i=0

bi(Rs)ρ
′i
n + sin(θ)O(ρ′n

mp+1
), (2.17b)

where ai(Rs) and bi(Rs) are the coefficients defined as follows, using the Kronecker

Delta function δ,

ai(Rs) = cos(θ)pi(Rs)− sin(θ)δ1i, (2.18a)

bi(Rs) = sin(θ)pi(Rs) + cos(θ)δ1i + s0δ0i. (2.18b)

2.3.4 Symbolic Form of the Soil Isoline Equation Without ρ′n

The index-like parameter ρ′n could be removed symbolically by solving one of

the above equations for ρ′n. I first defined two functions before proceeding with the
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derivation:

gr(ρ
′
n) =

mp∑
i=0

ai(Rs)ρ
′i
n + cos(θ)O(ρ′n

mp+1
), (2.19a)

gn(ρ
′
n) =

mp∑
i=0

bi(Rs)ρ
′i
n + sin(θ)O(ρ′n

mp+1
). (2.19b)

Using these functions, a reflectance spectrum could be expressed as

ρρρ = (gr(ρ
′
n), gn(ρ

′
n))

t
. (2.20)

After solving Eq. (2.19a) for ρ′n symbolically,

ρ′n = g−1
r (ρr), (2.21)

the soil isoline equation without the parameter ρ′n became

ρn = gn(g
−1
r (ρr)), (2.22)

or, reciprocally,

ρr = gr(g
−1
n (ρn)). (2.23)

Although I have described the derivation steps symbolically, the inversion process

expressed in Eq. (2.19a) (or Eq. (2.19b)) is not practical when applied to higher-order

terms. Practical applications of the representation require the truncation of certain

higher-order terms in Eqs. (2.19a) and (2.19b). The consequences of the truncation

order must be evaluated in view of the desired accuracy for an approximated soil iso-

line equation. The truncation orders in Eqs. (2.19a) and (2.19b) may be asymmetric;

that is, the truncation order may be selected such that Eq. (2.19a) provides a first-

order approximation whereas Eq. (2.19b) provides a third-order approximation. For

the sake of practicality, this point will be discussed further in the following sections.

2.4 Approximations of the Soil Isoline Equation

This section introduces several soil isoline equations approximated using the higher-

order truncated terms expressed in Eqs. (2.17a) and (2.17b). Although the polyno-

mial orders in the red and NIR reflectances are indicated by a single integer mp, they

are not necessarily identical (the orders may be asymmetric). Because the value of
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mp may be independently selected in either band, mr and mn will be used to refer

to the red and NIR reflectances, respectively. In the new notation, these equations

became

ρr =
mr∑
i=0

ai(Rs)ρ
′i
n + cos(θ)O(ρ′n

mr+1
), (2.24a)

ρn =
mn∑
i=0

bi(Rs)ρ
′i
n + sin(θ)O(ρ′n

mn+1
). (2.24b)

The soil isoline equation could be approximated by selecting integers for mr and

mn. Higher values of mr and mn increased the accuracy of the approximated soil

isoline. The drawback to choosing highly accurate approximations was that solving

these equations for ρ′n was difficult. Such difficulties could prevent the development

of a useful analytical formulation of the soil isoline. In the following subsections, I

introduce several approximations and investigate the accuracy of the approximated

soil isoline equations from a practical point of view. Each case is constructed using a

combination of mr and mn.

2.4.1 Case-1 (mr,mn) = (1, 1): First-order Approximation of the Soil Iso-

line Equation

The first case involves implementing a first-order approximation for both the red

and NIR reflectances. Here, mr and mn were set to unity. In this case, Eqs. (3.31)

and (3.32) were truncated at and beyond the second-order term.

ρr = a0 + a1ρ
′
n, (2.25a)

ρn = b0 + b1ρ
′
n. (2.25b)

In the above equations, the coefficients ai and bi depended solely on the soil reflectance

Rs (and were independent of the biophysical parameters). I explicitly avoided using

the parameter Rs during the derivation, for brevity. Equation (2.25a) was solved for

ρ′n to give

ρ′n = −a0
a1

+
1

a1
ρr. (2.26)
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Combining Eqs. (2.25b) and (2.26) yielded the first-oder approximated soil isoline

equation:

ρn =

(
b0 −

a0
a1
b1

)
+
b1
a1
ρr. (2.27)

2.4.2 Case-2 (mr,mn) = (1, N): Asymmetric First-order-in-Red Approxi-

mation

The second case involves implementing asymmetric truncation orders: mr and

mn. In this case, a first-order approximation was applied to the red reflectance, and

N-th order terms were retained in the NIR reflectance. The corresponding system of

equations could be expressed as:

ρr = a0 + a1ρ
′
n, (2.28a)

ρn =
N∑
i=0

biρ
′i
n. (2.28b)

Equation (2.28a) was solved for ρ′n and substituted into Eq. (2.28b) to give the soil

isoline equation:

ρn =
N∑
i=0

bi
ai1

(ρr − a0)
i. (2.29)

Equation (2.29) could also be expressed as:

ρn =
N∑
i=0

Giρ
i
r, (2.30)

where the coefficients Gi are defined by

Gi =
N∑
α=i

αCi(−a0)α−i bα
aα1
. (2.31)

2.4.3 Case-3 (mr,mn) = (N, 1): Asymmetric First-order-in-NIR Approxi-

mation

This case involves the same orders of approximation as Case-2, except that the

bands assigned to the first and N-th order approximations were reversed. The red

reflectance was approximated by a higher-order polynomial (mr = N). The final
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results were obtained by considering the reciprocal notation,

ρr =
N∑
i=0

Hiρ
i
n, (2.32)

where Hi represents a coefficient of the i-th order term of the NIR reflectance, defined

by

Hi =
N∑
α=i

αCi(−b0)α−iaα
bα1
. (2.33)

2.4.4 Case-4 (mr,mn) = (2, 2): Second-order Approximation

This work proceeded one step further to derive a different form of soil isoline

equations that included higher-order terms (at most second-order terms in both re-

flectances). This case was represented by (mr,mn) = (2, 2). The system of equations

became

ρr = a0 + a1ρ
′
n + a2ρ

′2
n , (2.34a)

ρn = b0 + b1ρ
′
n + b2ρ

′2
n . (2.34b)

In this work, I solved Eq. (2.34a) for the index-like parameter ρ′n to yield

ρ′n =
−a1 ±

√
a21 − 4a2(a0 − ρr)

2a2
. (2.35)

Note that Eq. (2.34b) could have been selected in place of Eq. (2.34a).

My numerical investigations indicated that the negative parts of the equations

derived above always provided the correct solution, that is, the signature of the equa-

tions. Therefore, throughout the remainder of this study, the negative part of the

equation was used in subsequent derivation steps. The origin of this result has not yet

been clarified, and further investigations are needed. These investigations will be ad-

dressed in future studies. The derived expressions, based on the signature coefficients

ai and bi, listed in Table 2.1, were further explored.

Substituting the values of ρ′n in Eq. (2.35) into Eq. (2.34b) yielded a second-order

approximation of the soil isoline equation,

ρn = b0 −
a1b1 + 2a0b2

2a2
+

a21
2a22

b2 +
1

2a2

(
−b1 +

a1
a2
b2

)√
a21 − 4a2(a0 − ρr) +

1

a2
b2ρr.

(2.36)
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Table 2.1: Signature of the parameters ai and bi in Eqs. (2.17a) and (2.17b), based
on numerical simulations.

Eq. (2.17a) Eq. (2.17b)
a1 a2 a3 b1 b1 b1
+ − + + +/− +

2.4.5 Case-5 (mr,mn) = (Nr, Nn) Higher-order Approximation

The final case described in this study involved approximations using higher-order

terms in both reflectances. It is difficult to solve higher-order polynomials analytically.

These difficulties were avoided here simply by including the higher-order terms in

the zeroth- order term. The analytical form derived in this study is only useful for

symbolic manipulation; however, practical approximations may be inferred from this

expression. The availability of a symbolic form enabled further analyses of problems in

which soil isolines play an important role. For this reason, it is worthwhile discussing

the derivation of the higher-order terms.

This derivation began with a parametric representation of the isoline equation,

ρρρ =

(
Nr∑
i=0

aiρ
′i
n,

Nn∑
i=0

biρ
′i
n

)t

. (2.37)

I next included all terms of order greater than 2 in the zeroth-order term. The red

reflectance could then be approximated by

ρr = a′0 + a1ρ
′
n, (2.38)

where the zeroth-order term a′0 is a function of ρ′n, and the soil reflectance Rs through

ai is defined by

a′0 = a0 +
Nr∑
i=2

a2ρ
′i
n. (2.39)

The remainder of the derivation steps were similar to those introduced in subsec-

tion 3.4.2. The final form of the soil isoline equation became

ρn =
Nn∑
i=0

G′
iρ

i
r, (2.40)

where G′
i is a coefficient (similar to G) that includes the index-like parameter ρ′n in
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the red reflectance, up to the i-th order term,

G′
i =

Nn∑
α=i

αCi(−a′0)α−i bα
aα1
. (2.41)

Note that the value of a′0 in Eq. (2.41) included the parameter ρ′n (as well as

the soil reflectance Rs), meaning that G′
i depended on both Rs and the biophysical

parameter (LAI, in this study). This dependency distinguished this case from the

case introduced in Subsection 3.4.2.

Equation (2.41) could not be used for numerical investigations in this study be-

cause a′0 depended on ρn itself, and ρn could not be computed from Eq. (2.41);

however, the availability of this formulation was beneficial in certain applications

in which a good estimate for ρn was available. One such application is the cross-

calibration of the VI. In such applications, the value of ρn for one sensor provided a

good estimate for the corresponding band of the other sensor. More specifically, a′0
of one sensor could be approximated by the reflectance of the other sensor. These

applications will be investigated in future studies.

2.5 Validity of the Derived Relationship

The preceding sections introduced an approach to deriving the relationship be-

tween two reflectances given constant soil optical properties. Here, the soil isoline

equations could be written simply as[
ρr

ρn

]
=

[ ∑
i aiρ

′i
n∑

i biρ
′i
n

]
. (2.42)

Although the derivation employed affine transformation and a polynomial fit, the

fundamental physical basis for this relationship has not been fully explored. This

study sought to address this issue by theoretically validating the derived soil iso-

line equation and numerically demonstrating its validity in the context of a radiative

transfer model of a layered canopy-soil system. Specifically, the polynomial fits em-

ployed in the derivation were validated in an analysis based on the theory of radiative

transfer.

During the derivation, the optimal polynomial approximation, represented by a

set of pi in the soil isoline equation, could not be distinguished. This section discusses

the validity of the selected approach based on a representation of the TOC reflectance.
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2.5.1 Derivation of the Soil Isoline Equations Using Additive Methods

The starting point was the following expression based on additive methods[111],

used in the derivation of the vegetation isoline equation[82],

ρλ = ρvλ + T 2
vλRsλ +O2

λ, (2.43)

where the last term represents the higher-order interaction terms between the canopy

and soil surface, defined by

O2
λ =

T 2
vλR

2
sλRvλ

1−RvλRsλ

. (2.44)

In the above equations, ρvλ is the vegetation canopy directional reflectance, T 2
vλ rep-

resents two-way transmittance, and Rvλ is the bi-hemispherical reflectance of the

vegetation canopy for the background-reflected photons entering the bottom of the

canopy layer and scattered back in the downward direction.

The derivation progressed by assuming that both the two-way transmittances

T 2
vλ and the pure vegetation reflectance ρvλ could be approximated using a simple

exponential function (Beer’s law) of the LAI (L),

ρvλ ≈ ρvλmax(1− exp(−k1λL)), (2.45)

T 2
vλ

≈ exp(−k2λL), (2.46)

where k1λ and k2λ are the coefficients of exponential functions of ρvλ and T 2
vλ, respec-

tively, and ρvλmax represents the maximum value of ρvλ.

Substituting Eqs. (2.45) and (2.46) into Eq. (2.43) permitted the reflectance,

expressed without the higher-order interaction term, to be expressed as

ρλ −O2
λ = ρvλmax(1− exp(−k1λL)) + exp(−k2λL)Rsλ. (2.47)

I then expanded the above exponential functions in a Taylor series about some

LAI value Lt to provide[
ρr −O2

r

ρn −O2
n

]
=

[ ∑
i ci(L− Lt)

i∑
i di(L− Lt)

i

]
, (2.48)
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where

ci =


Rsr exp(−Ltk2r) + ρvRmax(1− exp(−Ltk1r))

(i = 0)
(−1)i

i!
(Rsrk

i
2r exp(−Ltk2r)− ρvrmaxk

i
1r exp(−Ltk1r))

(i ̸= 0)

(2.49)

di =


Rsn exp(−Ltk2n) + ρvnmax(1− exp(−Ltk1n))

(i = 0)
(−1)i

i!
(Rsnk

i
2n exp(−Ltk2n)− ρvnmaxk

i
1n exp(−Ltk1n))

(i ̸= 0).

(2.50)

The above expression presents a theoretically derived soil isoline equation based on

an analytical expression for the TOC reflectance.

Remarkably, the soil isoline equations derived through two different approaches

(Eq. (2.42) and Eq. (2.48)) yielded the same polynomial form that differed only in

terms of the common parameter and coefficients. Equation (2.42) indicates that the

common parameter was ρ′n, whereas the counterpart to Eq. (2.48) was expressed in

terms of (L − Lt). Recall that ρ′n is equivalent to a distance-based VI, such as the

WDVI. Because WDVI represents a biophysical parameter, the parameters ρ′n and

(L − Lt) have the same physical import (a nearly one-to-one relationship, in some

cases). For this reason, the two equations were considered to be physically equivalent,

thereby validating Eq. (2.42).

2.5.2 Results and Discussion

A numerical experiment was conducted to support the theoretical model. The

TOC reflectance was modeled using the radiative transfer code PROSAIL[99]. Wave-

lengths in the red and NIR bands were modeled based on the reflectances at 674

and 870 nm, respectively, which corresponded to the band center wavelengths of the

GOSAT-CAI sensor.

The reflectance spectra determined using the model yielded the soil line param-

eters. The soil line slope and offset then became s1 = 1.20 and S0 = 0.03, respec-

tively. The three sets of coefficients were determined such that (ρvrmax, ρvnmax) =

(0.0141, 0.4946), (k1r, k1n) = (1.098, 0.349), and (k2r, k2n) = (1.124, 0.514).

This work then investigated the errors in the theoretical soil isoline equation, Eq.

(2.48), by comparing the right-hand side of Eq. (2.48) and the simulated reflectance
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of the left-hand side of Eq. (2.48). Figure 2.5 shows the mean absolute differences

(MAD) between the right-hand side and the left-hand side of Eq. (2.48) as an error

in the derived soil isoline equation at various LAIs through an expansion of the 2nd

Taylor series. The left figure represents the error in the red band, and the right figure

represents the NIR band error. The MAD were obtained at four Lt values, namely,

0, 1, 2, and 4. The case of Lt = 0 corresponded to the Maclaurin series expansion.

The results revealed that the MAD became zero or nearly zero at or around the

value of Lt in each case. These results indicated that the errors in Eq. (2.48) were

reasonably small given the appropriate selection of Lt. Therefore, the soil isoline equa-

tion, Eq. (2.48), derived from an analytical representation of the TOC reflectance,

Eq. (2.43), could approximate the simulated soil isoline reasonably well. Recall that

the common parameter ρ′n in Eq. (2.42) was equivalent to L−Lt in Eq. (2.48). Also,

recall that the two equations (Eqs. (2.42) and (2.48)) assumed the same form (power

series). The above discussion (demonstrating the validity of Eq. (2.48) numerically),

together with the equivalence of ρ′n and L − Lt and the form of the power series

theoretically justified the expression of the soil isoline equation using Eq. (2.42) (its

functional form), as long as the constants were appropriately selected.
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Figure 2.5:
Plot of the mean absolute difference (MAD) between the red (top) and
NIR reflectances (bottom). MAD was obtained as the difference between
the theoretically derived soil isolines and the numerically simulated soil
isolines, using PROSAIL as a function of the LAI.
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2.6 Discussions

This study introduced a parametric form of the soil isoline equation, in which

an index was used as a common parameter. Numerical difficulties associated with

singularities in the original subspace were overcome by rotating the red and NIR axes

through an angle equal to the soil line slope. Although the derived form included a

common parameter, a polynomial of arbitrary order could be used to represent the

soil isoline equation. The derived parametric form suffered from the drawback that

the soil isoline equation implicitly (rather than explicitly) described the relationship

between the red and NIR reflectances. An explicit form of the soil isoline was derived

by considering a series of truncation cases.

The validity of the derived relationship was explored from a fundamental physics

point of view. The theoretical validity of the derived soil isoline equation was numeri-

cally supported using a radiative transfer model of a layered canopy-soil system. The

polynomial fits employed during the derivation were validated in an analysis based

on the theory of radiative transfer. The resultant form was similar to the soil isoline

equation derived previously based on the analytical form of the TOC reflectance.

The findings from this study may be summarized as follows: 1) The soil isoline

equation based on a polynomial fit was functionally equivalent to the isoline derived

from a radiative transfer model. 2) The previously derived isoline was more numeri-

cally stable and, hence, more suitable than the isoline derived using an RT model.

The major drawback of Eq. (2.42) was the use of a common parameter ρ′n in the

expression, because this expression did not guide the selection of optimal parameters.

This point demands further investigation in the context of future studies. The spectral

domains of the red and NIR subspaces should be relaxed to expand this anallysis to the

wavelength range 400-2500nm for application to satellite data analysis, as summarized

in Appendix A.
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CHAPTER III

Soil Isoline Equations in the Red–Near-infrared

Reflectance Subspace Describe a Heterogeneous

Canopy

3.1 Introduction

The previous chapter derived the soil isoline under the assumption of full canopy

coverage. In this case, the derived isoline equations were applicable only to regions

in which a spatially homogeneous canopy covered the soil surface. These studies did

not consider a heterogeneous target in which only a portion of the target region was

covered by the canopy. Figure 3.1 shows a comparison of the soil isolines obtained

from fully covered regions and partially covered regions in the red and NIR reflectance

subspaces. The figure clearly reveals the differences between the two cases (black line

and gray line). These differences could introduce errors into subsequent analyses of

the isolines if one did not distinguish the two cases. These cases may be treated

appropriately by introducing a parameter that represents the fractional area covered

by the canopy into the soil isoline formulations. This study attempted to do this

using a parameter called the fraction of vegetation cover (FVC)[38, 112–116].

This chapter describes the derivation of the soil isoline equations with consider-

ation for the FVC. The objectives of this study were: (1) to derive the soil isoline

equations without truncating the polynomials; (2) to approximate the derived isoline

equations for the sake of practicality by truncating the higher-order terms to obtain

an analytical form of the red and NIR reflectance relationships under conditions of a

constant soil reflectance spectrum; and (3) to validate the derived results by conduct-

ing a set of numerical experiments using a radiative transfer model to describe the

coupling between the leaf and canopy layer systems. The outline of the derivation

is presented first with a summary of the key findings derived in Chapter 2. This
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Figure 3.1:
Comparison of (solid black lines) the soil isolines for full canopy coverage
conditions, and (gray) soil isolines for partial (50%) canopy coverage con-
ditions. The dotted line indicates the soil line in the red-NIR reflectance
subspace. The green dot ρρρfull∞ represents the convergent point for a fully
covered dense canopy. Green circles ρρρpartial∞,wet , ρρρ

partial
∞,mod., and ρρρ

partial
∞,dry indicate

partially covered canopies with different soil backgrounds, ρρρs,wet, ρρρs,mod.,
and ρρρs,dry, which denote the reflectance spectra of wet, moderately wet,
and dry soil surfaces, respectively. Blue dots on the soil line indicate soil
spectra without canopy. The gray dashed lines indicate the lines between
the spectra for pure soil and a fully covered canopy.

study then introduces models of an inhomogeneous system comprising the vegetation

canopy and soil surface, describe precise derivations and approximation cases and

provide numerical experiments using a radiative transfer model. Finally, I discuss

the results by focusing on the accuracy of the derived and approximated soil isoline

equations.
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3.2 Background

This section and Figure 3.2 briefly summarize the 4 steps used to derive the

soil isoline equation. The first step was the transformation of an original red and

near infrared (NIR) reflectance subspace into a new subspace. This transformation

consisted of rotation by the angle θ, defined as the slope of a soil line. The purpose of

the transformation was to prevent singularities that could otherwise occur during the

next step. The second step involved determination of the polynomial coefficients pi of

the i-th order term for each soil isoline in the transformed subspace. The relationship

between the red and NIR reflectances was represented along a soil isoline using a

polynomial in the new subspace. The number of coefficient sets was equal to the

number of soil isolines. The third step involved the transformation of this relationship

back into the original subspace to obtain a parametric representation of the soil isoline

equation. The soil isolines were represented by power series of a common parameter.

The final step involved the approximation of the soil isoline equations as relationships

between the red and NIR reflectances of the original space by truncating the order

of the common parameter. The approximated form of the soil isoline equation varied

with the truncation order for each band. Hence, the accuracy of the derived isoline

depended on the truncation orders of the two bands.

3.3 Parametric Representation of the Soil Isoline Equations

For a Partially Vegetated Pixel

This section introduces the steps used to derive soil isoline equations that include

a parameter to indicate the FVC, defined by ω. Please note that (1 − ω) represents

the proportion of bare soil within a target pixel. Therefore, the parameter ‘FVC’ is

tightly related to the soil parameter. In this context, it is quite natural to employ

FVC in the soil isoline formulations. Although the derivation described here is similar

to the one introduced in Chapter 2 for the case of full canopy coverage, care will be

required to maintain consistency across the derived expressions and to clarify the

differences between the fully covered and partially covered cases.

3.3.1 A Linear Mixture Model of the Top-of-Canopy Reflectance Spectra

of Partially Vegetated Pixels

The starting point for the derivation was the assumption of a linear mixture model

in which the top-of-canopy (TOC) spectrum was represented by a linear mixture

of pure spectra known as endmember spectra[116]. Although the assumption of a
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Figure 3.2:
Steps used to derive the soil isoline equations in the red and near-infrared
(NIR) reflectance subspaces introduced in the previous chapter.
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linear mixture was idealistic, it became a reasonably good estimate as the size of

the target pixel increased. Thus, this assumption restricted the applicable range of

this study to images acquired by satellites with moderate (15− 30 m) to low spatial

resolution. This study applied the two endmember linear mixture model (LMM)

in the red and NIR reflectance subspaces, denoted by the subscripts ‘r’ and ‘n’,

respectively. The subscripts ‘v’ and ‘s’ denote vegetation and soil, respectively. The

TOC spectrum, ρρρ = (ρr, ρn), was defined as the weighted sum of the vegetated and

non-vegetated spectra, defined by ρρρv = (ρvr, ρvn) and ρρρs = (ρsr, ρsn), respectively.

The TOC reflectance may then be expressed as

ρρρ = ωρρρv + (1− ω)ρρρs. (3.1)

This study also assumed that the soil layer underneath the canopy was homoge-

neous over the entire target pixel. These assumptions enabled us to represent the

well-known relationship between the red (Rsr) and NIR (Rsn) reflectances of the soil

surface using a single soil line[93, 117, 118],

Rsn = s0 + s1Rsr, (3.2)

where s0 and s1 represent the offset and slope of the soil line, respectively. In this

study I explicitly differentiated the soil reflectance (Rsr, Rsn) as an input parameter

from the output reflectance spectrum (ρsr, ρsn) of the soil line model.

The next step involved applying an affine transformation to the TOC reflectance

spectrum. This transformation was needed to avoid singular points in the numerical

treatment of the soil isolines across a broader range of LAI. In this study, the affine

transformation of a vector ρρρ into ρρρ′ was represented by the function φ, defined as

φ (ρρρ) = T (−θ)(ρρρ− τττ), (3.3)

where the angle θ, matrix T and vector τττ are further defined by

θ = arctan(s1), (3.4)

T (−θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
, (3.5)

τττ = (0, s0). (3.6)

Note that the parameter θ represents the angle between the X-axis and the soil line.

Using these definitions, the transformed reflectance spectra of ρρρ, ρρρv, and ρρρs could be
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written as

ρρρ′ = T (−θ)(ρρρ− τττ), (3.7)

ρρρ′v = T (−θ)(ρρρv − τττ), (3.8)

ρρρ′s = T (−θ)(ρρρs − τττ). (3.9)

Based on the linearity of the function φ, the following relation holds:

ρρρ′ = ωρρρ′v + (1− ω)ρρρ′s. (3.10)

The soil reflectance spectra became simple after the transformation because the

transformed soil line was projected along the new red axis,

ρρρ′s = (ρ′sr, 0), (3.11)

where ρ′sr is the offset of the transformed soil isoline equation in the new subspace,

ρ′sr =
√
ρ2sr + (ρsn − s0)2 = cos(θ)ρsr + sin(θ)(ρsn − s0). (3.12)

The TOC reflectance spectrum after the transformation could be written explicitly

as [
ρ′r
ρ′n

]
= ω

[
ρ′vr
ρ′vn

]
+ (1− ω)

[
ρ′sr
0

]
. (3.13)

Equation (3.13) suggested that the FVC parameter, ω, could be incorporated into

the soil isoline equations describing the full canopy coverage with several modifica-

tions. Considering that the full canopy coverage is a special case of the partial canopy

coverage, in which ω = 1, the above analogy could be understood intuitively, and this

work proceeded with the derivation steps according to this analogy.

3.3.2 Soil Isoline Equations in the Transformed Subspace

Rs represents a single input parameter along the soil line. Rs could be either Rsr,

Rsn, or a ratio of wet and dry soil spectra. In either case, only a single parameter

was needed to represent the model input. Therefore, I used Rs in the remainder of

this Chapter. The previous work in Chapter 2 proposed using a polynomial fit as

a function of the red soil reflectance Rs as a representative of the soil brightness.

By defining pi as a coefficient of the i-th order term, ρ′vr could be expressed as a
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polynomial of ρ′vn, such as

ρ′vr =
∞∑
i=0

pi(Rs)ρ
′i
vn. (3.14)

The next step was to eliminate ρ′vr and ρ′vn from Eqs. (3.13) and (3.14). The

result is an expression for the relationship between ρ′r and ρ
′
n,

ρ′r = ω
∞∑
i=0

pi(Rs)

(
1

ω
ρ′n

)i

+ (1− ω)ρ′sr (3.15)

= ξ +
∞∑
i=1

ω1−ipi(Rs)ρ
′i
n, (3.16)

where ξ represents the offset of the soil isolines, defined by

ξ = ωp0(Rs) + (1− ω)ρ′sr. (3.17)

Note that p0(Rs) represents the offset of the soil isolines for the case of full canopy

coverage in the transformed subspace. Because ρ′sr itself indicates the intersection

between the transformed soil line and the transformed soil isolines, this offset was

identical to ρ′sr,

ρ′sr = p0(Rs). (3.18)

Therefore, the offset of the soil isolines, ξ, was simply the offset for the case of a full

canopy coverage,

ξ = p0(Rs). (3.19)

3.3.3 Parametric Representation of the Soil Isoline Equations for a Par-

tially Covered Canopy

In the previous subsection, I derived the soil isoline equation in the transformed

subspace. Next, I transformed the soil isoline equation back into the original red and

NIR reflectance spaces. This process was performed by applying the inverse of the φ

transformation,

ρρρ = φ−1(ρρρ′) (3.20)

= T (θ)ρρρ′ + τττ . (3.21)
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Although Eq. (3.21) included ρ′r and ρ′n as components of ρρρ′ independently, ρ′r can

be written as ρ′n from Eq. (3.16). Therefore, Eq. (3.21) could be written explicitly

as a function of ρ′n. Based on the relationship of Eq. (3.16) and Eq. (3.19), the

parametric form of the soil isoline equation (Eq. (3.21)) became[
ρr

ρn

]
=

[
cos(θ)

sin(θ)

]
ρ′r +

[
− sin(θ)

cos(θ)

]
ρ′n +

[
0

s0

]
(3.22)

=

[
cos(θ)

sin(θ)

](
p0(Rs) +

∞∑
i=1

ω1−ipi(Rs)ρ
′i
n

)

+

[
− sin(θ)

cos(θ)

]
ρ′n +

[
0

s0

]
. (3.23)

For the sake of simplicity, this work further introduced the following notation to

describe the soil isoline equation,[
ρr

ρn

]
=

[
aaa′

bbb′

]
ρρρ′n, (3.24)

where ρρρ′n is a vector composed of the series ρ′n, and aaa
′ and bbb′ are vectors in a series of

coefficients used to describe the polynomials of ρ′n, defined by

ρρρ′n = [1 ρ′n ρ′2n · · · ]t, (3.25)

aaa′ = [a′0(Rs, ω) a′1(Rs, ω) a′2(Rs, ω) · · · ], (3.26)

bbb′ = [b′0(Rs, ω) b′1(Rs, ω) b′2(Rs, ω) · · · ], (3.27)

where the coefficients a′i(Rs, ω) and b′i(Rs, ω) are defined using the Kronecker delta

δij,

a′i(Rs, ω) = δi0(cos(θ)p0(Rs)) + (1− δi0)(− sin(θ)δi1 + cos(θ)ω1−ipi(Rs)), (3.28)

b′i(Rs, ω) = δi0(sin(θ)p0(Rs) + s0) + (1− δi0)(cos(θ)δi1 + sin(θ)ω1−ipi(Rs)). (3.29)

Note that the zeroth-order terms of the polynomials describing each reflectance are

equal to the spectra of the soil underneath the vegetation canopy ρρρs,

ρρρs =

[
cos(θ)p0(Rs)

sin(θ)p0(Rs) + s0

]
. (3.30)

Thus, all isolines approximated by any order will contain the true soil spectra and
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will agree exactly with the soil spectra, regardless of the approximation order, for the

zero vegetation case.

3.4 Approximations of the Soil Isoline Equation

This section introduces several approximate forms of the soil isoline equations

based on the introduction of various truncation terms in Eq. (3.24). Let’s define

the integers mr and mn as the polynomial orders employed in the red and NIR

reflectances, respectively. The truncation terms could be explicitly differentiated by

expressing Eq. (3.24) in the following form:

ρr =
mr∑
i=0

a′i(Rs, ω)ρ
′i
n + cos(θ)O(ρ′n

mr+1
), (3.31)

ρn =
mn∑
i=0

b′i(Rs, ω)ρ
′i
n + sin(θ)O(ρ′n

mn+1
), (3.32)

where the function O represents the contributions of the higher-order terms.

The soil isoline equation could be approximated by choosing a pair of integers

for mr and mn. Larger values would provide greater accuracy in the approximated

soil isoline. The drawback, however, of choosing larger values for mr and mn is the

increased difficulty associated with solving these equations for ρ′n to derive analytical

formulations of the soil isoline.

In Chapter 2, I introduced a series of derivations to approximate the soil isolines by

assuming full canopy coverage. In these derivations, the value of the FVC parameter

ω did not appear explicitly in the study; nevertheless, it was considered as a special

case in which the FVC was fixed to unity. Under these conditions, the following

derivations are consistent with those described in Chapter 2. This point will be

explored carefully below during the derivation steps.

The analogy described above was used to guide the derivations first by simply

enumerating the differences between the isolines of the fully covered case and of the

partially covered case. I first clarified the differences between the coefficients defined

in the previous study, ai(Rs) and bi(Rs), and the coefficients defined in this study

a′i(Rs, ω) and b′i(Rs, ω). The major difference between the two cases (fully covered

case and partially covered case) could be summarized in terms of the ratio of the

coefficients a′i and b
′
i to their counterparts ai and bi, respectively, as follows:

a′i(Rs, ω)

ai(Rs)
=
b′i(Rs, ω)

bi(Rs)
=

{
1 (i = 0, 1)

ω1−i (i < 1).
(3.33)
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Because the differences only arose in the second- and higher-order terms, the approx-

imated soil isoline equation could be modified under full canopy coverage conditions

according to the following correction rules:

ai(Rs) →

{
ai(Rs) (i = 0, 1)

ω1−iai(Rs) (i = 2, 3, · · · )
(3.34)

bi(Rs) →

{
bi(Rs) (i = 0, 1)

ω1−ibi(Rs) (i = 2, 3, · · · ).
(3.35)

3.4.1 Case-1 (mr,mn) = (1, 1): First-order Approximation of the Soil Iso-

line Equation

The first case to which the soil isoline approximation was applied comprised a

model of the reflectance spectra in which only on the zeroth- and first-order terms were

used to describe the red and NIR reflectances. This rule, summarized as (3.34) and

(3.35), held that all coefficients (a0, a1, b0, and b1) described in the previous studies

remained unchanged. Therefore, the first-order approximated soil isoline equation

was identical to the previously derived result,

ρn =

(
b0 −

a0
a1
b1

)
+
b1
a1
ρr. (3.36)

Note that the approximated isoline did not include the parameter ω, indicating that

this approximation was not suitable for conditions of partial canopy coverage. This

parameter could be thought of as enhancing the nonlinearity of the soil isolines.

3.4.2 Case-2 (mr,mn) = (1, N): Asymmetric First-order-in-Red Approxi-

mation

In this case, higher-order terms (mn ≥ 2) were included in the NIR reflectance.

Therefore, the influence of the FVC appeared in the NIR. The influence of these terms

was explicitly differentiated by introducing a logical function ∆α(ω) in place of the

integer α, defined by

∆α(ω) = δα0 + (1− δα0)ω
1−α. (3.37)

This newly defined function was used to derive the soil isoline equation for a partial

canopy coverage by applying the correction rules (3.34) and (3.35) to the results
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introduced in Chapter 2. We then obtained an approximated isoline,

ρn =
N∑
i=0

Giρ
i
r, (3.38)

where the coefficient Gi was defined by

Gi =
N∑
α=i

αCi(−a0)α−i bα
aα1

∆α(ω). (3.39)

3.4.3 Case-3 (mr,mn) = (N, 1): Asymmetric First-order-in-NIR Approxi-

mation

This approximation case involved the same orders of approximation as Case-2,

except that the bands assigned to the first- and N-th-order approximations were re-

versed: The red reflectance was approximated by a higher-order polynomial (mr =

N). The reciprocity resulting from the alternate band assignment yielded an expres-

sion for the approximated isoline,

ρr =
N∑
i=0

Hiρ
i
n, (3.40)

where Hi represents the coefficient of the i-th-order term describing the NIR re-

flectance, defined by

Hi =
N∑
α=i

αCi(−b0)α−iaα
bα1

∆α(ω). (3.41)

3.4.4 Case-4 (mr,mn) = (2, 2): Second-order Approximation

The second-order soil isoline included the FVC parameter ω in both bands because

the second-order terms were influenced by the FVC. Application of the correction rule

to the previously derived expression yielded the following result:

ρn = b0 −
a0b2
a2

+
b2
a2
ρr +

ω

2a22
(a1b2 − a2b1)(a1 + I(Rs, ω, ρr)), (3.42)

where the function I(Rs, ω, ρr) was defined by

I(Rs, ω, ρr) =

√
a21 −

4a2
ω

(a0 − ρr). (3.43)
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Note that only the last term depended on the parameter ω. Special caution is

needed in evaluating the above expression numerically because the denominator in

I(Rs, ω, ρr) contains ω, which can be equal to zero. As ω approached zero, the re-

flectance spectrum on the isoline converged to the soil reflectance spectrum ρρρs. Care is

needed only in the context of numerical algorithmic treatments of this approximated

form. This form of approximation is useful in a variety of applications, in addition to

its utility in future studies.

3.4.5 Case-5 (mr,mn) = (Nr, Nn): Higher-order Approximations

The last case comprises higher-order approximations in both the red and NIR

bands. As described in a previous study, a rigorous solution to this approximation

is impossible because the given equation cannot be solved for ρn analytically. This

work circumvented this difficulty by including a higher-order term in the zeroth order

expression. In this way, I explicitly represented the higher-order contribution to the

approximated formulation, as described in Chapter 2. As a result, the derivation was

similar to the derivation introduced in Subsection 3.4.2, and the final approximation

form became

ρn =
Nn∑
i=0

G′
iρ

i
r, (3.44)

where G′
i is a coefficient (similar to G) that includes the index-like parameter ρ′n in

the red reflectance, up to the i-th-order term,

G′
i =

Nn∑
α=i

αCi(−a′0)α−i bα
aα1

∆α(ω), (3.45)

and

a′0 = a0 +
Nr∑
i=2

ω1−iaiρ
′i
n. (3.46)

Note that the value of a′0 in Eq. (3.45) includes the parameter ρ′n (in addition to the

soil reflectance Rs), meaning that G′
i also depends on both Rs and the biophysical

parameter (LAI, in this study). This dependency distinguished this approximation

case from the one introduced in subsection 3.4.2.

The expression for Eq. (3.45) could not immediately be used in numerical in-

vestigations because a′0 depended on ρn itself, which could not be computed from
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Eq. (3.45). Nevertheless, the availability of this formulation is beneficial to certain

applications for which a good estimate of ρn is available. One such application is

the inter-calibration of multiple sensors. For example, the spectral vegetation indices

measured from two or more different sensors may be used simultaneously in a study,

provided that the sensors are inter-calibrated. In such applications, the value of ρn

for one sensor provides a good estimate of the other sensor’s corresponding band.

The soil isoline equation used in the higher-order case could be useful in prac-

tice to achieve inter-sensor calibration involving hyperspectral sensors. In such an

application, the band reflectance (as from a destination sensor) would be available,

regardless of the band configuration of the multispectral sensor; hence, relatively low-

order terms would be required. Without losing practicality, better accuracy would be

expected from the use of a higher-order approximation of the soil isoline equation.

3.5 Numerical Methods

The validity of each derived soil isoline equation was evaluated using a series

of numerical experiments involving a coupled leaf–canopy radiative transfer model,

PROSAIL[96, 97, 99]. To allow for a comparison between the current evaluation

results and a previous study results (obtained from the fully covered case), the ex-

perimental conditions were summarized in Table 3.1.

Special caution is needed in treatment of the FVC value ω in this study. The

meaning of ω is an aerial proportion of a target region that can be represented by the

PROSAIL model. When the LAI is less than unity, the true FVC value becomes less

than unity within the homogeneous canopy region simulated by PROSAIL. Therefore,

the actual FVC value over the entire region becomes smaller than ω when the LAI

value is less than unity. By use of this definition, we maintain consistency with the

derivation and numerical results of the derived soil isolines in the case of a fully

covered canopy.

Three PROSAIL parameters were varied during the experiments: the LAI, soil

mixture ratio between the wet and dry soil spectra included in PROSAIL, which

basically determined the soil brightness, and the FVC. PROSAIL was used to simulate

the TOC spectra of the vegetated portion of the target area, and these spectra were

then linearly mixed with the soil reflectance spectra to model the TOC spectra of the

partial canopy coverage. This study assumed a spherically uniform value for LAD,

and the 10 and 30 degree angles were set as the view-zenith and illumination angles,

respectively. The nominal parameter sets used to describe the leaf chemical content

reported in reference[119] were applied in the current experiments. These simulation
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steps are summarized in Fig. 3.3.

The reflectance spectra collected from the vegetated area could be obtained as an

output from PROSAIL. The wavelengths of the output reflectance fell in the range

400–2500 nm. This spectrum depended only on LAI, the soil brightness, and FVC

in this study. Next, the reflectances of the red and NIR bands were simulated at 660

nm and 850 nm, respectively, based on the band center wavelength of the GOSAT-

CAI (Greenhouse Gases Observing Satellite-Cloud and Aerosol Imager). The pure

reflectance from a bare soil surface (a representative non-vegetated surface) was also

simulated based on a linear sum of two standard soil spectra included in PROSAIL.

An LAI of 0–4 at 0.8 intervals was set. Note that the approximated coefficients

pi depended somewhat on the maximum value of the LAI. In practical applications

involving actual satellite images, these coefficient should be optimized using a training

data set with known biophysical parameters and soil properties.

Table 3.1: Input parameters of PROSAIL assumed in this study.
Illumination and viewing condition

Solar zenith angle 30 degrees
View zenith angle 10 degrees
Relative azimuthal angle 0 degrees

Canopy properties
Hot spot parameter 0.01
Leaf area index 0-to-4 (1/2 intervals)

Pixel heterogeneous property
Fractional vegetation cover 0-to-1 (1/10 intervals)

Leaf chemical and structure properties
Brown pigment content 0.0
Carotenoid content 8 µg · cm−1

Chlorophyll content 40 µg · cm−1

Dry matter content 0.009 µg · cm−1

Leaf angle distribution spherical†

Leaf equivalent water 0.01 cm
Leaf structure parameter 1.5

Soil properties
Wet soil reflectances at 660&850 nm 0.038&0.071
Dry soil reflectances at 660&850 nm 0.315&0.408
Soil mixture ratio (SMR)‡ 0-to-1 (1/6 intervals)
†In PROSAIL, spherical LAD is modeled setting (LIDFa,LIDFb) = (−0.35,−0.15)

where LIDF represents leaf inclination distribution function

‡ SMR is used to simulate various soil spectra, such as ρρρs = SMRρρρs,wet + (1− SMR)ρρρs,dry.
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Figure 3.3:
Flowchart describing the numerical procedure applied in the present ex-
periments.

A relationship between LAI and FVC was not assumed during the simulation.

Thus, both LAI and FVC were mutually independent in this study. The FVC ω

(varied from 0.0 to 1.0) was defined as the ratio of an output from PROSAIL to

the bare soil spectrum. The spectra obtained from the two-band LMM depended on

the soil brightness, LAI, and FVC. These simulated TOC reflectance spectra were

considered to be the true spectra in this study.

Most of the variables used in the approximated isolines were set equal to the cor-

responding values introduced in Chapter 2 (of a fully covered case). Therefore, the

steps of preparing the variables used in the isoline formulations were almost the same

as those applied in the case of full canopy coverage. In the case of full canopy cover-

age, the variables used in the soil isoline could be determined by following four steps:

(1) retrieving the soil line parameters (slope and offset) from the reflectance spectra

of the bare soil surface, (2) applying an affine transformation to the numerically sim-

ulated reflectance spectra, (3) fitting the transformed spectra along the soil isoline to

a polynomial to obtain the fitting coefficients (pi), (4) applying the inverse transfor-

mation back to the original red–NIR reflectance subspace to obtain the coefficients

of the soil isoline equations (ai, bi).
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The variables in the soil isoline equation for the case of partial canopy coverage

were then computed by combining the parameter ω with the variables prepared ac-

cording to the above four steps. The validity of the expressions derived in the previous

section was tested by evaluating nine approximate cases defined by different pairs of

mr and mn, representing the order of the terms used for the red and NIR bands,

respectively. This study assumed values of 1–3 for both mr and mn, which resulted

in nine combinations. Table 3.2 lists the expressions used to approximate the soil

isolines in this study.

3.6 Results and Discussion

Figure 3.4 shows plots of the soil isolines simulated numerically by PROSAIL and

the those approximated using the expressions derived for fully covered and partially

covered canopy cases. The marks denote the true reflectance spectra along each

soil isoline, whereas the lines represent the soil isolines approximated by the derived

expressions. The isolines were obtained by assuming three different soil brightness

values for two approximation cases defined by two pairs of mr and mn. The figure

indicated that the approximated soil isolines were close to the true isolines, even for

the case of partial canopy coverage. At the same time, the choice of mr and mn

influenced the accuracy of the isolines (the difference between the marks and lines).

These results qualitatively suggested the validity of the derived expression. We next

conducted a quantitative evaluation of the soil isolines.

The accuracy of each of the nine soil isoline approximation cases was defined as

the difference between the the simulated spectra (considered to be the true spectra in

this study) and the approximated isolines. Figure 3.4 shows the isolines and simulated

spectra obtained for an FVC value of 0.5 or 1.0 at three soil brightness levels for (left)

mr = 1 and mn = 2 and (right) mr = 2 and mn = 1. As shown in Fig. 3.4, the

accuracy of the isoline depended on the choice of the integer pair for mr and mn.

This trend should be clarified quantitatively. The error ε(mr,mn) was defined as the

norm of the vector spanned by the simulated spectra ρρρsim. and the derived isolines

Table 3.2: Summary of the approximated soil isoline equations used in the numerical
experiments.

# of truncated order mr = 1 mr = 2 mr > 2
mn = 1 Eq. (3.36) in 3.1 Eq. (3.40) in 3.3 Eq. (3.40) in 3.3
mn = 2 Eq. (3.38) in 3.2 Eq. (3.42) in 3.4 Eq. (3.44) in 3.5
mn > 2 Eq. (3.38) in 3.2 Eq. (3.44) in 3.5 Eq. (3.44) in 3.5
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(b) second-first isolines
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Figure 3.4:
Comparisons between the approximated soil isoline equations and the
‘true’ reflectance spectra simulated by PROSAIL. (a) The isolines ap-
proximated based on the truncation orders mr = 1 and mn = 2, and (b)
the isolines approximated based on the truncation orders mr = 2 and
mn = 1. The solid lines denote the case of FVC=1.0 (fully covered case),
and the dashed lines denote the case of FVC=0.5 (partially covered case).
The isolines for three types of soils with different brightness values (wet,
intermediate, and dry) are shown in each case.
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ρρρiso. characterized by mr and mn. As a result, ε(mr,mn) may be expressed as a function

of FVC ω, the soil brightness Rs, and LAI may be denoted L, as

ε(mr,mn)(ω,Rs, L) = min||ρρρsim.(ω,Rs, L)− ρρρ
(mr,mn)
iso. (ω,Rs)||2. (3.47)

Figure 3.5 shows plots of the distance profiles of the approximated isolines and the

true spectra. The distances were plotted as a function of LAI and soil brightness (soil

reflectance of the red band), and the value of FVC was assumed to be 0.5 for all plots.

The order of the error was clarified by presenting the plots on a logarithmic scale.

The nine plots were arranged from top to bottom (row-wise) for different choices

of mn = 1 − 3. The plots were arranged from left to right (column-wise) for the

values of mr = 1 − 3 as well. The figure shows that the distance became shorter

(hence, the error became smaller) as the choice of both mr and mn increased. These

results indicated that the approximate soil isolines were better for the cases involving

higher-order truncations, indicating the validity of the derivation.

Figure 3.6 shows plots of the average differences between each isoline as a function

of the FVC and soil brightness, for the nine cases. The figures clearly indicated that

the errors remained mostly stable, meaning that the order of the error generally

depended on the order of the truncation. Moreover, the approximated isoline derived

in this study nicely followed the variations in FVC.

The overall trend in the error was confirmed by plotting the trends in the error

and the standard deviation (STD). Figure 3.7 shows the averaged error and the STD

for each isoline for all cases. The overall trend in the relationship indicated that the

STD decreased as the error decreased. Considering the effects of the FVC, the error of

the smaller FVC resulted in a smaller STD. These results implied that the maximum

error and STD tended to occur at the highest FVC value.

The overall averaged error and STD values for each case are summarized in Table

3.3. Three different LAD values (spherical, planophile and erectophile) were compared

to elucidate the influence of these values on the error and STD. The results revealed

that both the error and its STD were reduced along with the higher-order terms in

the approximated soil isolines. These results confirmed the validity of the derived

expressions.

The results of this study, based on a comparison of the results of the previous

study, which assumed a fully covered canopy, indicated that the accuracy of the soil

isoline equation improved as the vegetation coverage became smaller than unity. The

contribution of the canopy layer became smaller as the FVC value becomes larger,

giving rise to this effect. This study implicitly assumed that the soil line used in this

46



S
oi
l
B
ri
gh

tn
es
s

0.15

0.3

0.45

(mr,mn)=(1,1)

S
oi
l
B
ri
gh

tn
es
s

0.15

0.3

0.45

(mr,mn)=(1,2)

Leaf Area Index
0 1 2 3 4

S
oi
l
B
ri
gh

tn
es
s

0.15

0.3

0.45

(mr,mn)=(1,3)

(mr,mn)=(2,1)

(mr,mn)=(2,2)

Leaf Area Index
0 1 2 3 4

(mr,mn)=(2,3)

(mr,mn)=(3,1)

(mr,mn)=(3,2)

Leaf Area Index
0 1 2 3 4

log ε(mr ,mn)

(mr,mn)=(3,3)

-4.5

-3

-1.5

Figure 3.5:
Errors associated with the approximated soil isolines for nine combina-
tions of the truncation order. The errors are plotted as a function of LAI
and soil brightness (soil reflectance of the red band.) The FVC parameter
was fixed to 0.5 during the simulations.

study included no errors. In reality, a soil line always includes a certain degree of

uncertainty when the slope and offset are determined numerically. The derived soil

isoline equations are, therefore, limited. The derivation assumed a certain model for

the soil reflectance spectrum, and errors in the soil model would be expected to prop-

agate into the soil isoline equations. The effects of the soil model uncertainties should

be investigated thoroughly in a future study. At the same time, accommodation of a

better soil spectral model should also be explored.
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Figure 3.6:
Plots of the mean absolute differences (MAD) between each soil isoline as
a function of the FVC and soil brightness, for nine combinations of the
truncation order.
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Figure 3.7:
Overall score of (bar) MAD and (line) a STD for each soil isoline equation
derived with the combination of polynomial orders (mr,mn). The bars
and lines in green color indicate the scores for 100% canopy coverage,
whereas those in blue color indicate 50% canopy coverage.
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Table 3.3: Mean error of the approximated soil isoline equations for the three cases of
LAD; (a) Spherical, (b) Planophile and (c) Erectophile.

(a) Spherical

(mr,mn) (1,1) (2,1) (3,1) (1,2) (1,3)

Mean 5.6E-03 3.1E-03 2.5E-03 3.1E-03 2.8E-03

Std. Dev. 6.0E-03 3.7E-03 3.5E-03 3.1E-03 3.0E-03

(mr,mn) (2,2) (3,2) (2,3) (3,3)

Mean 1.1E-03 6.0E-04 1.7E-04 1.3E-04

Std. Dev. 1.2E-03 9.5E-04 2.9E-04 2.3E-04

(b) Planophile

(mr,mn) (1,1) (2,1) (3,1) (1,2) (1,3)

Mean 5.7E-03 3.1E-03 2.5E-03 3.1E-03 2.8E-03

Std. Dev. 3.8E-03 3.7E-03 3.5E-03 3.1E-03 3.1E-03

(mr,mn) (2,2) (3,2) (2,3) (3,3)

Mean 1.4E-03 6.1E-04 1.8E-04 1.2E-04

Std. Dev. 1.4E-03 9.6E-04 3.0E-04 2.3E-04

(c) Erectophile

(mr,mn) (1,1) (2,1) (3,1) (1,2) (1,3)

Mean 3.1E-03 2.5E-03 2.4E-03 1.5E-03 1.3E-03

Std. Dev. 3.5E-03 2.7E-03 2.6E-03 1.6E-03 1.6E-03

(mr,mn) (2,2) (3,2) (2,3) (3,3)

Mean 6.6E-04 4.5E-04 1.0E-04 8.4E-05

Std. Dev. 6.7E-04 5.8E-04 1.5E-04 1.2E-04
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3.7 Concluding Remarks

This study extends the previously derived soil isoline equations in the red–NIR

subspace for the case of full canopy coverage. The parameter FVC was considered by

employing the two-endmember LMM. Because the model used the FVC parameter

explicitly in its formulation, we were able to derive the parametric form of the soil

isoline equations using the FVC. The derivations proceeded by carefully noting the

differences between the fully covered case and the partially covered case in the defi-

nitions of the isoline coefficients. I found that the FVC parameter contributed to the

coefficients of the second- and higher-order terms for both the red and NIR bands,

indicating that the FVC parameter only influenced the higher-order terms.

These findings influenced the derivation of the four approximated cases defined

over a range of truncation orders in the red and NIR reflectances. The validity of the

derived expression was investigated by conducting a series of numerical experiments

using PROSAIL. The numerical results revealed that the errors in the approximated

isolines were reduced as the truncation order increased. These results clearly indicated

that the isoline equations could be improved by accounting for the FVC parameter

explicitly. Further validation efforts are needed to demonstrate the utility of this

isoline model in analyzing satellite imagery. Such efforts will be considered in future

work.
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CHAPTER IV

The Relationship Between Ratio-based Two-band

Spectral Vegetation Indices Measured at Multiple

Sensors on a Parametric Representation of the Soil

Isoline Equations

4.1 Introduction

Environmental studies often require data records spanning several decades of time

intervals to validate a research hypothesis. Because the life span of an Earth obser-

vation satellite is generally about five years, long-term data records usually com-

prise multiple datasets acquired using several Earth observation satellites. Therefore,

inter-sensor calibrations among the past, current, and future satellite sensors play an

important role[16] in determining the quality of such data.

Limiting our discussion to an investigation of the relationships between the VI

values of different sensors, one difficulty in this investigation involves the selection

(and often identification) of a model that provides a set of reflectance spectra under

any desirable conditions. In any investigation based on a numerical model, this selec-

tion depends simply on the parameter range covered by a model. On the other hand,

the availability of analytical and convenient models is very limited. One possibility is

to use the analytical relationship between two reflectances of different wavelengths,

known as the isoline equations[29, 81–83]. The ‘soil isoline equation’ introduced in

Chapter 2 is one such choice.

Soil isolines introduce several advantages into investigations of the VI relation-

ships. One advantage to this approach is that it can clarify the influences of the pure

soil reflectance spectrum on the inter-sensor VI relationship. Because the soil isoline

is a set of reflectance spectra obtained from canopies with a constant soil content,

any relationships along a soil isoline can be purely attributed to a specific soil spec-
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trum. Another advantage is that the use of the isoline enables the derivation of the

relationship between two VI values obtained from different sensors. Two VIs may be

related directly by eliminating the reflectance variables from a system of equations.

One such example has been introduced elsewhere[103]. Soil isolines are good candi-

date measures for examining sensor-to-sensor variability. The advantages of the soil

isoline equations may provide a new perspective on the inter-sensor calibration of VIs

to which this study contributes.

The purpose of this study is to clarify the influences of the soil reflectance spectrum

on the biases that exist when two sensors capture the same target spectra at different

wavelengths. To this end, I set three objectives: First, I derived a relationship between

two VI values measured from different sensors based on the recently introduced soil

isoline equations. Second, I validated the derived results using a radiative transfer

model to describe the coupling between the vegetation canopy and leaf reflectance.

The third objective was to identify the dependencies of the derived relationships on

the soil reflectance spectra obtained using both analytical and numerical approaches.

The use of the soil isoline for the inter-calibration of VI data has been examined

briefly in pilot studies[109, 120, 121], which indicated that the soil isoline equation

may provide good insights into the inter-sensor spectral differences. This study at-

tempts to further advance the derivation and numerical validation studies. The theo-

retical background will be explained in section 4.2. Next, we introduce the derivation

steps conceptually without using any numerical models in section 4.3. Some practi-

cal considerations are provided in section 4.4. The results of numerical experiments

are presented in sections 4.5, 4.6 and 4.7. Finally, the discussion and conclusions

summarize the findings in sections 4.8 and 4.9, respectively.

4.2 Background

4.2.1 Soil Isoline Equation in the Red-NIR Reflectance Subspace

A soil isoline is defined as a set of reflectance spectra, primarily in the red and

near-infra red (NIR) reflectance subspaces, obtained by assuming fixed soil surface

conditions beneath a vegetation canopy. Such isolines may be simulated using a

radiative transfer model of the vegetation canopy, e.g., PROSAIL[96, 97, 99]. The

conditions assumed during the simulation comprise a fixed soil spectrum that creates

a set of spectra considered to be an isoline. Soil isoline equations comprise a system of

equations that describe the relationship between the red and NIR reflectances, along

with a soil isoline[107, 119]. A formal derivation of the soil isoline has been described

in Chapter 2. Below, I simply summarize the derived isoline equation.
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The isoline derivation requires a soil line[93], which is a well-established concept.

A soil line is essentially a zero-vegetation isoline and is often represented using a

linear form of the relationship between the red (Rsr) and NIR reflectances (Rsn) of

the soil surface,

Rsn = s0 + s1Rsr, (4.1)

where s1 and s0 are the slope and offset, respectively.

Following the derivation steps described in Chapter 2, the form of the soil isoline

that includes a common parameter ρ′n becomes

ρr = fr(ρ
′
n) =

∞∑
i=0

αiρ
′i
n, (4.2)

ρn = fn(ρ
′
n) =

∞∑
i=0

βiρ
′i
n, (4.3)

where

αi = cos(θ)pi − sin(θ)δ1i, (4.4)

βi = sin(θ)pi + cos(θ)δ1i + s0δ0i, (4.5)

with the Kronecker delta δ and the following definition of the angle corresponding to

the slope of the soil line s1,

θ = arctan(s1). (4.6)

Note that the coefficients pi were obtained from a series of numerical simulations

carried out using canopy radiative transfer models. The pi values depended only on

the soil surface reflectance. Because the red and NIR reflectances of the soil surface

assumed during the derivation and numerical simulation could be described by the

soil line represented in Eq. (4.1), the only parameters that characterized the pi values

were Rsr or Rsn in this study.

The derivation of the inter-sensor VI relationships introduced in this study de-

pended on the parameter ρ′n. Although ρ
′
n is simply a common parameter in the soil

isoline equations, Eqs. (4.2) and (4.3), it actually derives its meaning in the deriva-

tion of the soil isoline equations, as clearly explained in Chapter 2. The definition of

ρ′n is equivalent to the difference VI (DVI) [30] or, more rigorously, to the weighted

DVI (WDVI), fully accounting for the soil line slope and offset[122].
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4.2.2 A General Form of the VI Model

A general form of the VI equation was employed in this study to cover a variety

of ratio-based two-band VI models. I employed a form expressed as the ratio of two

linear sums of the red and NIR bands with a constant term. This form could be

expressed by

v = F (PPP,ρρρ) = P0
P1ρr + P2ρn + P3

P4ρr + P5ρn + P6

, (4.7)

where v represents a VI value, and a vector PPP is composed of a set of coefficients P0

through P6. The coefficients Pi were determined by the specific choice of VI, such

as the NDVI; hence, these values characterized the performances of the VIs. The

derivation of the inter-sensor VI relationships was introduced based on this general

form. Although this form could not cover all two-band VIs, some of the ratio-based

two-band VIs could be represented by choosing the coefficients Pi. Several examples

of well-known VIs are summarized in Table 4.1.

Table 4.1:
The seven coefficients provide a generalized form of the ratio-based two-
band VIs.

v P0 P1 P2 P3 P4 P5 P6

NDVI 1 −1 1 0 1 1 0
SAVI 1.5 −1 1 0 1 1 0.5
EVI2 1.5 −1 1 0 2.4 1 1

4.3 Derivation Steps for Obtaining the Inter-sensor VI Re-

lationships

This section symbolically describes the derivation steps applied to obtain the inter-

sensor VI relationships based on the soil isoline equations. The derivation involved

the non-unique choice of variables and relationships and the consideration of several

terms in the derivations of individual cases. A variety of choices during the derivation

can decrease the clarity of the model. These choices may be avoided by implementing

the symbolic form introduced in this section.

This study assumed that the sensor differences were attributed only to the wave-

lengths during the derivation and numerical simulations. My intention was to elimi-

nate the influences of the spatial resolution, the viewing and illumination geometries

and so on, from the influences of the sampling wavelength.
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The first step of the derivation involved the elimination of one of the two re-

flectances. This step assumed that an inter-sensor VI relationship could be obtained

from each soil isoline. In other words, I attempted to characterize the relationship

along a soil isoline. This approach enabled us to use the relationship between the red

and NIR reflectances expressed by Eqs. (4.2) and (4.3). This first step is explained

in the following subsection.

4.3.1 Relationship Between the Vegetation Indices and ρ′n

In this subsection, I derived the VI along with a single soil isoline as a function of

the common parameter ρ′n. This derivation could be performed simply by substituting

the soil isoline equations, Eqs. (4.2) and (4.3), into the red and NIR reflectances of

the general form of the VI model equation, Eq. (4.7). As a result, Eq. (4.7) became

v = Fv(PPP , ρ
′
n) = P0

P1fr(ρ
′
n) + P2fn(ρ

′
n) + P3

P4fr(ρ′n) + P5fn(ρ′n) + P6

. (4.8)

4.3.2 Symbolic Form of the Inter-sensor VI Relationship

In this subsection, I explicitly differentiated two sensors, denoted sensor-A and

sensor-B. The VI model equation, Eq. (4.8), was applied to two sensors, indicated

by the subscripts a and b throughout this chapter. Two definitions of the VI model

equations were used here:

va = Fva(ρ
′
na), (4.9)

vb = Fvb(ρ
′
nb), (4.10)

where the vector PPP is omitted for brevity.

The goal of this study was to directly relate va and vb, defined by Eqs. (4.9) and

(4.10). To this end, we required one condition in addition to Eqs. (4.9) and (4.10).

From a physical point of view, the required relationship related the variables of the

two sensors. The choice of condition was the relationship between the index-like

parameters of sensor-A (ρ′na) and sensor-B (ρ′nb), represented by

ρ′nb = fab(ρ
′
na). (4.11)

Since the WDVI-like parameter (ρ′n) was used to bridge two-sensor’s output, the

following derivation targeted the ratio-based two-band VI.

In summary, three relationships, Eqs. (4.9), (4.10), and (4.11), were the key to

the derivation of the relationship between va and vb.
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Equation (4.9) was solved for va symbolically,

ρ′na = F−1
va (va). (4.12)

The relationship between va and vb was given by

vb = Fvb ◦ fab ◦ F−1
va (va), (4.13)

where the circle ‘◦’ represents composition of functions. Equation (4.13) describes the

relationship between va and vb, which is one objective of this study. This form may

be further modified to relate vb to the spectrum of the original sensor ρaρaρa by inserting

Eq. (4.7) into Eq. (4.13),

vb = Fvb ◦ fab ◦ F−1
va ◦ F (ρaρaρa). (4.14)

Note that Eq. (4.14) directly related the reflectance spectrum of the original sensor

(ρaρaρa) to a VI value of the destination sensor (vb), which enabled us to understand the

derivation steps. These derivation steps are summarized in the flowchart shown in

Fig. 4.1.
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Figure 4.1:
Flowchart describing the derivation steps used to obtain the inter-sensor
VI relationships based on the soil isoline equations.
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4.4 Practical Considerations for the Inter-sensor VI Rela-

tionship

The derivation explained symbolically in the previous section involves the inversion

of one of the functions, Fva. Thus, the analytical approach is restricted by the choice

of function in practical applications. Specifically, although Fva could be approximated

using a geometric series, the order of the polynomial was limited to a small number.

Practical considerations were addressed to ensure model accuracy while limiting the

order of the polynomial to relatively low values, preferably, to first-order polynomials.

This section addresses several points that should be treated carefully for practical

applications.

4.4.1 Treatment of Higher-order Terms

Equation (4.8) involves a rational function of two polynomials of the parameter

ρ′n. The explicit form of Eq. (4.8) is

v = P0

∞∑
i=0

Aiρ
′i
n

∞∑
i=0

Biρ′in

, (4.15)

where

Ai = P1αi + P2βi + P3δ0i, (4.16)

Bi = P4αi + P5βi + P6δ0i. (4.17)

The derivation proceeded while retaining the contributions of the higher-order

terms by including the second- and higher-order terms in the zeroth-order term,

thereby enabling the inversion process at the same time,

v = Fv(ρ
′
n) = P0

A′
0 + A1ρ

′
n

B′
0 +B1ρ′n

, (4.18)

where

A′
0 = A0 +

∞∑
i=2

Aiρ
′i
n, (4.19)

B′
0 = B0 +

∞∑
i=2

Biρ
′i
n. (4.20)
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Note that the second- and higher-order terms included in the zeroth-order term

could be computed numerically for the original sensor (sensor-A) from the physical

definition of the index-like parameter ρ′n, which is clearly discussed in Chapter 2,

ρ′n = − sin(θ)ρr + cos(θ)(ρn − s0). (4.21)

Furthermore, the value of ρ′n obtained from the destination sensor, ρ′nb, could be

estimated from the known variable ρ′na based on the relationship between ρ′na and

ρ′nb, as represented by the function fab of Eq. (4.11).

Equation (4.18) is applicable to both sensor-A and sensor-B; however, the co-

efficients represented by the As and Bs were unique to each sensor because both

coefficients were actually functions of the coefficients pi and, hence, the values of αi

and βi in the soil isoline equations, Eqs. (4.2) and (4.3). Therefore, Eq. (4.18) should

be distinct from the equation obtained from the other sensors, as achieved using the

subscripts a and b for sensor-A and sensor-B, respectively. We now have

va = Fva(ρ
′
na) = P0

A′
0a + A1aρ

′
na

B′
0a +B1aρ′na

, (4.22)

vb = Fvb(ρ
′
nb) = P0

A′
0b + A1bρ

′
nb

B′
0b +B1bρ′nb

. (4.23)

The inverse of Fva may be simply defined by solving Eq. (4.22) for ρ′na,

ρ′na = F−1
va (va) =

−B′
0ava + P0A

′
0a

B1ava − P0A1a

. (4.24)

This function will be used later in this section. Note that the coefficients A′
0a and

B′
0a are not really constants. They depend on the index-like parameter ρ′na and, thus,

vary with the reflectance spectrum of sensor-A. Also note that the reflectance of

sensor-A is available prior to the translation process since it is defined as the original

sensor. Thus, this inversion process does not deteriorate the measurement accuracy

by computing ρ′na from ρaρaρa for each pixel to adjust the coefficients A′
0a and B′

0a during

the numerical algorithm.
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4.4.2 Inter-sensor Relationship Between the Index-like Parameters

The next focus of this work is the relationship between ρ′na and ρ
′
nb, represented by

the function fab. In this study, the relationship was approximated by a polynomial,

ρ′nb = fab(ρ
′
na) =

∞∑
i=0

uiρ
′i
na. (4.25)

Recall that the relationship between the red and NIR reflectance spectra measured by

a specific sensor may be approximated by a soil isoline equation for a soil spectrum

that remains constant throughout the numerical simulations. The coefficients of Eq.

(4.25) depend on the soil spectrum, because ρ′n is defined along with a soil isoline

whose coefficients show variation with the changes of soil spectrum. This analogy

suggests that the accuracy of Eq. (4.25) may be improved by expressing the coef-

ficients as functions of the soil spectrum. Given the practicalities of the numerical

treatment, the derivation was carried out by approximating a linear relationship,

ρ′nb ≈ u0 + u1ρ
′
na. (4.26)

This point must be investigated thoroughly in a separate study.

4.4.3 Approximation of Eq. (4.23)

Equation (4.23) includes the higher-order terms of ρ′nb, which is a common pa-

rameter that describes the destination sensor (sensor-B),

A′
0b = A0b +

∞∑
i=2

Aibρ
′i
nb, (4.27)

B′
0b = B0b +

∞∑
i=2

Bibρ
′i
nb. (4.28)

Note that the parameter ρ′nb depends on the reflectance of the destination sensor.

Thus, it cannot be estimated directly from the known reflectance spectrum (of the

original sensor, ρaρaρa); however, as explained briefly above, ρ′nb may be estimated from

the function fab. As a result, Eqs. (4.27) and (4.28) become

Â′
0b = A0b +

∞∑
i=2

Aib[fab(ρ
′
na)]

i, (4.29)

B̂′
0b = B0b +

∞∑
i=2

Bib[fab(ρ
′
na)]

i. (4.30)
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The function fab was approximated using Equation (4.26) to yield

Â′
0b = A0b +

∞∑
i=2

Gibρ
′i
na, (4.31)

B̂′
0b = B0b +

∞∑
i=2

Hibρ
′i
na, (4.32)

where

Gib = ui1

∞∑
k=i

kCiu
k−i
0 Akb, (4.33)

Hib = ui1

∞∑
k=i

kCiu
k−i
0 Bkb. (4.34)

As a result, Eq. (4.23) becomes

vb = F ′
vb(ρ

′
nb) = P0

Â′
0b + A1bρ

′
nb

B̂′
0b +B1bρ′nb

. (4.35)

Equation (4.26) was applied to the first-order terms of both the denominator and

the numerator on the right-hand side of Eq. (4.35) to yield

vb = F ′
vb ◦ fab(ρ′na), (4.36)

= P0
X + A1bu1ρ

′
na

Y +B1bu1ρ′na
, (4.37)

where

X = Â′
0b + A1bu0, (4.38)

Y = B̂′
0b +B1bu0. (4.39)

4.4.4 Inter-sensor VI Relationship

Equations (4.37) and (4.24), along with va and vb, may be related by

vb = F ′
vb ◦ fab ◦ F−1

va (va), (4.40)

= P0
c1va − P0c0
d1va − P0d0

, (4.41)
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where

c1 = B1aX − u1B
′
0aA1b, (4.42)

c0 = A1aX − u1A
′
0aA1b, (4.43)

d1 = B1aY − u1B
′
0aB1b, (4.44)

d0 = A1aY − u1A
′
0aB1b. (4.45)

Equation (4.41) shows that a linear relationship between the index-like parameters

does not guarantee a linear relationship between the two VIs whose model equation

is defined as a rational function.

The variables defined by Eqs. (4.42) through (4.45) may be re-written using ρ′na
explicitly according to

c1 = ψ(AAAb,BBBa) + ψ′(AAAb,BBBa, ρ
′
na), (4.46)

c0 = ψ(AAAb,AAAa) + ψ′(AAAb,AAAa, ρ
′
na), (4.47)

d1 = ψ(BBBb,BBBa) + ψ′(BBBb,BBBa, ρ
′
na), (4.48)

d0 = ψ(BBBb,AAAa) + ψ′(BBBb,AAAa, ρ
′
na), (4.49)

where

AAAs = (A0s, A1s, A2s, · · · ), (4.50)

BBBs = (B0s, B1s, B2s, · · · ), (4.51)

ψ(µµµ,ννν) = ν1(µ0 + u0µ1)− u1ν0µ1, (4.52)

ψ′(µµµ,ννν, ρ′na) =
∞∑
i=2

[
ui1ν1

(
∞∑
k=i

kCiu
k−i
0 µk

)
− u1νiµ1

]
ρ′ina. (4.53)

The end of this section treats a special approximation case, in which all of the

second- and higher-order terms are truncated at ρ′n in the soil isoline equations, Eqs.

(4.2) and (4.3). In such a case, the index-like parameter ρ′na is no longer included

in the coefficients of the inter-sensor VI relationship Eq. (4.41). In such a dramatic

scenario, Eq. (4.41) may be reduced to the following form

v̂b = P0
ψ(AAAb,BBBa)va − P0ψ(AAAb,AAAa)

ψ(BBBb,BBBa)va − P0ψ(BBBb,AAAa)
, (4.54)

where all four coefficients expressed by a function ψ are fully independent of ρ′na.
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4.5 Results of the Numerical Simulation and Discussion

This section demonstrates the validity of the relationships derived and introduced

in this study. All uncertainties associated with the spectral acquisition were elimi-

nated by applying the framework to a data set calculated numerically using radiative

transfer (RT) models of the vegetation canopy and leaf layers. The validity of the

derived relationships was then investigated by comparing the VI values of the two

sensors to the VI values translated from the other sensor. The translation from the

VI value of one sensor to the value of the other sensor was performed by applying

the relationship derived using the coefficients computed from the coefficients of the

soil isolines. The following subsections describe the numerical simulation conditions

(parameter settings) and obtained results.

4.5.1 Numerical Simulations of the Inter-VI Relationships

A combined leaf and canopy RT model, PROSAIL, was employed to simulate

the top-of-the-canopy (TOC) reflectance spectra under a variety of conditions. The

numerically obtained TOC reflectance spectra were then used to simulate the band

reflectances of four hypothetical sensors by selecting different pairs of wavelengths as

the red and NIR bands (shown below). One of the four sensors was assigned as the

‘original’ sensor (sensor-A), the VI values of which were translated into the values

of the other three sensors (sensor-B), denoted as the ‘destination’ sensors during the

derivation.

The numerical simulations were conducted by selecting three different parameters

to characterize the VI differences. The first parameter was the leaf area index (LAI),

a representative biophysical parameter. The value of the LAI varied from 0 to 4.0

at 0.5 intervals. The second parameter was the soil reflectance spectrum, which can

significantly disrupt the VI values. The soil reflectance spectra were obtained by

linearly combining the wet and dry soil spectra calculated in the PROSAIL model.

The third parameter was the wavelength, which introduced differences in the band

reflectances measured by the different sensors; thereby producing differences in the VI

values as well. The other parameters in the leaf model PROSPECT and the canopy

model SAIL were held constant during the experiments.

The parameters that characterized the leaf chemical content in the PROSPECT

model were fixed at the standard (average) values. The leaf angle distribution, an

input of the SAIL model, was fixed at a spherical distribution. Under these assump-

tions, the LAI was the only parameter of biophysical properties in this study.

The band center wavelengths of the four hypothetical sensors were set to values
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equal to the band center wavelengths of the GOSAT-CAI, LANDSAT8-OLI, Suomi

NPP-VIIRS, and TERRA-MODIS. The wavelength pairs of the red ρr and NIR bands

ρn of the four hypothetical sensors were (ρr, ρn)=(674, 870), for sensor-A, (655, 865)

for sensor-B1, (672, 865) for sensor-B2, and (645, 869) for sensor-B3 in [nm]. Figure

4.2 shows the reflectance spectra and soil isolines retrieved from sensor-A in the red

and NIR reflectance space. The figure shows good agreement among the retrieved

soil isolines, which will be used to translate the VI values. The detailed steps used to

obtain the soil isoline retrievals are described in Chapter 3.

The translation of the VI values from one sensor to another sensor was performed

by regarding the CAI-like sensor (sensor-A) as the original sensor, and the other

three sensors (sensor-B1, B2, and B3) were the destination sensors. I considered

three translation cases from sensor-A (original) to sensors-B1, -B2, and -B3 (destina-

tions). I labeled these three pairs of sensors as translation Case-1, Case-2, and Case-3,

respectively. Again, the translation process involved translating a set of reflectance

spectra (of the two bands) from sensor-A (CAI-like sensor); the VI values were then

translated into sensor-B1 (case1), sensor-B2 (Case-2), and sensor-B3 (Case-3). The

VI translation was performed in all cases simply by using the derived VI relationships.

The validity of the derived relationship was then evaluated based on a comparison

between the simulated VIs obtained from sensor-B and the translated VIs obtained

from sensor-A.

4.5.2 Dependence of the Coefficients ψ on the Soil Reflectance

The first step in the numerical experiments involved clarifying that the coefficients

of the derived expressions depended on the variations in the soil reflectance spectraRRRs.

Recall that the inter-sensor VI relationships, as described by Eq. (4.41), were derived

for a constant soil type due to the use of the soil isoline equation. The relationship,

therefore, varied as the soil reflectance spectrum changed. This characteristic of the

system is fundamental to this study.

The numerical experiments were conducted by first obtaining the coefficients of

Eq. (4.41) from the coefficients of the soil isolines. The algorithms and procedures

applied to the numerical retrievals of the soil isolines have been described in Chapter

3. The results of the first-order polynomial approximation of the NDVI provided a

representative approximation scenario in the numerical experiments. This subsection

investigated the variations in the four coefficients of Eq. (4.54) for P0 = 1, based on

the definitions of the NDVI. Figure 4.3 shows the plots of the four coefficients in Eq.

(4.54) for Case-1 (translation from the VI of sensor-A (CAI-like sensor) to sensor-B1

(OLI-like sensor)), to represent the three sensor combinations. Note that the X-axis
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Figure 4.2:
Plots of the soil isolines (lines) represented by Eqs. (4.2) and (4.3), and
numerically simulated reflectance spectra (circles) in the red and NIR re-
flectance space. The soil isoline was truncated at the third-order term.
The reflectance spectra obtained at a constant soil brightness were de-
noted by the same color.

in the figure is the soil reflectance of the red band for sensor-A. (The NIR reflectance

of the soil spectrum was computed from the red reflectance using the assumed soil

line, Eq. (4.1)).

As shown in the figure, all four coefficients varied linearly with the soil red re-

flectance. These results indicated that the inter-sensor VI relationship depended on

the soil reflectance beneath the canopy layer, a representative parameter of the land

surface conditions. The implication of these results are serious (and important): The

regression coefficients determined without accounting for the variations in the soil

spectrum could suffer from the variations in the soil spectrum in a simple polynomial

model of the inter-sensor VI relationship.

4.5.3 Accuracy and Applicability of the Derived Translation Function

The validity of the derived relationships were evaluated by comparing the VI

values of the two sensors before and after the translation. The VI value translated

from sensor-A to sensor-B was denoted by v̂b which was computed according to Eq.

66



Red Soil Reflectance
0 0.1 0.2 0.3

ψ
(µ

,ν
)

-1

-0.5

0

0.5

1
ψ(Ab,Ba)

ψ(Ab,Aa)

ψ(Bb,Ba)

ψ(Bb,Aa)

Figure 4.3:
Plots of the four coefficients represented by ψ in Eq. (4.54) for NDVI
under Case-1 conditions (translation from sensor-A to sensor-B1).

(4.41). The aim of this section is to validate the derived expressions by confirming the

accuracy improvement of vb after the translation from va (hence v̂b). The comparison

between (va−vb) and (v̂b−vb) was facilitated by representing the differences as ε and

ε̂, respectively, such as

ε = va − vb, (4.55)

ε̂ = v̂b − vb, (4.56)

where va is the VI value of the CAI-like sensor-A, and vb represents the VI value

obtained from the destination sensors, namely, OLI-like sensor-B1, VIIRS-like sensor-

B2, or MODIS-like sensor-B3. The values of ε and ε̂ were positive if the VI values

measured using the original sensor (va) and the values obtained from the translated

VI values (v̂b) exceeded vb. The latter case also indicated that translation by Eq.

(4.41) overestimated the value of the destination sensor.

Figure 4.4 shows plots of ε and ε̂ for NDVI as a function of an LAI characterized

by one of two different soil spectra (wet or dry conditions). The calculated values

of ε and ε̂ are indicated by the dotted and solid lines, respectively. In the figure,

ε and ε̂ are labeled by the legends ‘before’ and ‘after,’ respectively. The differences
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between the soil reflectance spectra of the wet and dry soils are represented by the

filled circle and the empty square, respectively. The upper three plots correspond to

Case-1 (CAI vs. OLI) and retain terms up to the first-, second-, or third-order terms

of a polynomial in the soil isoline equations. The middle and bottom rows of the

figure show the results obtained from Case-2 (CAI vs. VIIRS) and Case-3 (CAI vs.

MODIS), respectively.

This figure clearly shows that the translation error ε̂ (solid line) was smaller than

the original differences ε (dotted line) across nearly the entire LAI range in all cases.

This fact clearly validates the expression derived in this study.

Overall, the original difference ε was larger for the bare soil (LAI=0) in this simu-

lation. Although the differences decreased significantly after applying the translation

ε̂, the translation error in this LAI range (LAI was nearly zero) was relatively larger

than the values measured in the middle to higher LAI ranges. These results indicated

that the relationship derived in this study should be improved along the soil line (base

line). Additionally, special treatment may be needed to reduce the translation errors

at low-vegetation pixels.

A comparison of the results obtained from using polynomials of different orders in

the soil isoline approximations revealed that the first-order approximation translation

results (the plots shown in the left column) were almost as good as the second-order

results (the middle column) and the third-order results (the right column). These

properties were somewhat surprising; we had expected that the use of higher-order

polynomials would improve the model accuracy. The lack of improvement most likely

resulted the fact that the relationship between ρ′na and ρ′nb was approximated by a

first-order polynomial. Two factors influenced the accuracy of the translation results.

First, the order of the polynomials (truncation) used for the soil isoline equation,

and second, the approximation of the relationship between the index-like parameters

(ρ′na) of sensor-A and that of sensor-B (ρ′nb). In Chapter 3, we confirmed that the

accuracy of the soil isoline equation increased as the polynomial order increased.

The polynomial order of the soil isoline may not determine the accuracy under the

conditions applied in the present case.

The use of a higher-order polynomial to describe the relationship between ρ′na and

ρ′nb is expected to improve the translation accuracy; however, this step is impractical.

The analytical form of a relationship described by a second-order polynomial would

be more complicated than the current form, which undermines the practical utility

of an analytical expression. This point requires further investigation in a separate

study.
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Figure 4.4:
Plots of differences before (ε) and after translation (ε̂) for the NDVI as
a function of the LAI. The dotted lines represent the variables defined
by Eq. (4.55), and the solid lines represent the variables defined by Eq.
(4.56). Filled circles and empty squares denote the cases of the wet and
dry soils, respectively. The results obtained from different orders of the
truncation terms are organized in columns. From left to right, the columns
present the results of the first-, second-, and third-order approximations.
The results for the cases of three sensor pairs are presented across the
rows.
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The trends in the other VI models were investigated by creating similar plots for

the SAVI and EVI2, as shown in Fig. 4.5. The trends were similar to those obtained

using the NDVI, as observed in the SAVI soil isolines approximated using a first-

order polynomial (left column) or a third-order polynomial (middle column). The

right column plots the results obtained from the use of the EVI2 approximated using

third-order soil isolines. Table 4.2 summarizes the mean absolute differences in the

VI values (|ε̂|) over the entire range of the LAI and soil brightness (from wet to dry

conditions) normalized by the original difference (|ε|). Table 4.3 also summarizes the

maximum differences of their absolute values normalized by the original difference.

These results reveal that the original differences (ε) decreased significantly after the

translation (ε̂), thereby validating the derived expressions.

Finally, I examined land cover dependence on the derived inter-sensor VI relation-

ships. Figure 4.6 shows the plots of MAD under various combinations of Chlorophyll

content (from 20 to 60 µg/cm2) and leaf angle distribution (Spherical, Planophile,

Erectophile, and Uniform). The results indicate that the accuracy of the derived ex-

pressions varies with the biophysical parameters. It thus implies some extent of land

cover dependence. Further comprehensive investigations will be needed to completely

understand the land cover dependence on the derived relationships.
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Figure 4.5:
The plots presented in Figure 4.4 were calculated for the VIs: SAVI and
EVI2. The left column presents the results of the SAVI calculated using
a first-order term. The center and right columns present results of the
SAVI and EVI2, respectively, calculated up to the third-order term. The
influence of the truncation order for the SAVI was assessed by comparing
the left and the center columns. The differences between the SAVI and
EVI cases were assessed by comparing the center and right columns.
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Table 4.2: Normalized mean absolute differences in the derived translation functions
(in percent).

VI Orders of soil isolines
NDVI 1 2 3

Case-1 25.6 28.0 24.6
Case-2 11.7 18.9 19.0
Case-3 25.8 26.7 23.6

SAVI 1 2 3
Case-1 46.0 30.7 26.5
Case-2 14.7 15.0 13.9
Case-3 35.2 26.1 22.8

EVI2 1 2 3
Case-1 50.0 33.2 28.2
Case-2 15.6 15.9 14.5
Case-3 35.9 26.5 22.9

Table 4.3: Normalized maximum absolute differences in the derived translation func-
tions (in percent).

VI Orders of soil isolines
NDVI 1 2 3

Case-1 28.4 19.7 17.8
Case-2 5.1 7.0 8.2
Case-3 40.0 27.5 26.6

SAVI 1 2 3
Case-1 12.7 12.3 11.8
Case-2 5.9 9.6 8.9
Case-3 15.5 15.6 15.4

EVI2 1 2 3
Case-1 16.8 16.1 13.5
Case-2 7.7 13.5 11.3
Case-3 20.0 20.3 17.6
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Figure 4.6:
Plots of (a) the mean absolute difference (MAD) and (b) the MAD nor-
malized by the original difference in percent by the translation function
based on the first-order isoline equations Eq. (4.54) for NDVI under
Case-1 conditions (translation from sensor-A to sensor-B1) as a function
of chlorophyll content Cab. The dashed line with diamond marks repre-
sents (a) the MAD or (b) the normalized MAD under spherical leaf angle
distribution (LAD), while solid lines with square, triangle and circle are
those under planophile, uniform and erectophile LAD, respectively.
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4.6 Numerical Evaluation of the Translation Accuracy

In the previous section, which described a study relating to spectral issues, the

work demonstrated the potential for reducing biases caused from differences in the

spectral bands of two sensors based on the derived VI-to-VI relationship. Although

the translation by the inter-VI relationship significantly reduced bias, one question

arose: Is the magnitude of the residual bias after bias reduction satisfactory for

the intercalibration of actual satellite data? This study must identify theoretical

limitations on the magnitude of the bias reduction before applying this technique to

the intercalibration of actual observation records. This study attempted to address

this concern by conducting both analytical and numerical simulations. Specifically, I

derived the magnitude of bias errors analytically based on the senor-specific signal-

to-nose ratio (SNR) reported in sensor specifications. I compared the predicted bias

errors to the difference between the VI values of the two sensors after translation to

minimize biases using the proposed technique.

4.6.1 Experimental Conditions

A well-known numerical model PROSAIL[99] was employed to simulate top-of-

canopy reflectance spectra in which the values of the LAI and soil brightness model

inputs varied. The center wavelength positions of the SRFs for the three sensors

(GOSAT-CAI, Terra-MODIS, and Landsat8-OLI) were used to model the VIs from

distinct sensors. In this study, CAI was defined as a sensor (sensor-a) used for ob-

servation (original sensor), whereas the other two were defined as the target sensor

(sensor-b) to which the value of NDVI from sensor-a was adjusted. In other words, va

from CAI was translated to v̂b using Eq. 4.40. I then evaluated the translation error

in terms of the mean absolute difference (MAD) of the VI difference ε and the mean

absolute error (MAE) of the error after translation ε̂ for wet and dry soils. The MAD

and MAE in the case of the NDVI are summarized in Table 4.4. The table reveals

that the MAE was smaller than MAD by a factor of three or four.

4.6.2 NDVI Uncertainty Propagated by the SNR

Finally, the MAE values were compared to the errors propagated from the SNR of

the reflectance defined by σv

ρn
and σv

ρr
. In the case of NDVI (Eq. (4.7)), the propagated

error could be represented by

σ2
v =

(
∂v

∂ρn

)2

σ2
n +

(
∂v

∂ρr

)2

σ2
r . (4.57)
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After some arrangements, the final form of Eq. (4.57) became

σ2
v =

SNR−2
n + SNR−2

r

2
(1− v2)2, (4.58)

where SNRn and SNRr are the signal-to-noise ratios of the NIR and red band of

the destination sensors, respectively. Furthermore, I defined SNR to simplify the

propagated error,

σv =
1− v2

SNR
, (4.59)

where

SNR =

(
SNR−2

n + SNR−2
r

2

)− 1
2

. (4.60)

The SNRs of the OLI and MODIS sensors for the red (SNRr) and NIR (SNRn) bands,

and their normalized SNR (SNR) are shown in Table 4.5.

4.6.3 Translation Error vs. SNR-based Uncertainty

Figure 4.7 shows a comparison between the MAE and σv for the two cases. The fig-

ure presents the OLI and MODIS results in red and blue colors, respectively. Dashed

lines in the figure correspond to the intersection (vintrsect) between the MAE and

Table 4.4: Mean absolute difference (MAD) of the NDVI difference (vb−va) and mean
absolute error (MAE) of the translation error (vb − v̂b) for two soil types
under wet and dry conditions.

sensor-a sensor-b soil MAD MAE
CAI OLI wet 3.1E-03 1.3E-03

dry 4.8E-03 9.3E-04
CAI MODIS wet 9.1E-03 2.9E-03

dry 7.8E-03 1.7E-03

Table 4.5: Signal-to-noise ratios (SNRs) of the instruments in sensor-b for the red
(SNRr) and NIR (SNRn) bands, and normalized SNR (SNR).

sensor-b SNRr SNRn SNR
OLI 340 460 386.67

MODIS 128 201 152.69
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SNR-based uncertainties derived from Eq. (4.59) under the condition σv = MAE, as

vintrsect =
√

1−MAE · SNR. (4.61)

Minimum and maximum values of vintrsect are also shown in Fig. 4.7 The results

showed that the translation error (reduced bias by the technique) was lower than the

propagated error across most of the VI range, except at higher NDVI values (>0.7);

however, the NDVI values between 0.7 and 0.8 displayed nearly equal uncertainties.

4.6.4 Remarks

This study compared the analytically derived error propagated from the sensor-

specific SNR with a reduced bias using the proposing isoline-based intercalibration

technique. Numerical simulation results confirmed that the VI intercalibration tech-

nique reduced the biases in the NDVI to the level of the VI errors propagated from the

random errors specified by the reported SNR. The results indicate that this technique

could reduce the magnitude of VI differences down to the level of the unavoidable

random errors propagated from the sensor-specific SNR. Further studies are needed

to confirm this analysis by applying the technique to actual satellite imageries.
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Figure 4.7:
Plots of the error propagated from the signal-to-noise ratio (solid lines)
and MAE (color area) for translation error ε̂. The results obtained from
the OLI and MODIS cases are represented by red and blue colors, re-
spectively. The MAE ranges were reported in Table. 4.4. Dashed lines
correspond to the intersection vintrsect.
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4.7 Investigation of Sources in Translation Errors

The present study assumed that the intersensor relationship between ρ′na and ρ′nb
could be expressed as a first-order equation. This limitation revealed the derivation of

the inter-VI relationship as a rational function with consideration for the soil bright-

ness variations underneath the vegetation canopy; however, numerical experiment

conducted using the PROSAIL model suggested that the accuracy of the intrasensor

relationship, encompassed by the soil isoline equations in the red–NIR space, did not

depend on the derived VI translation.

4.7.1 Translation Algorithm Using Three Mappings

The numerical results in Chapter 3 confirmed that the accuracy of the soil isoline

equation increased as the polynomial order increased. Therefore, ‘non-linearity’ is

expected to affect the VI translation accuracy. Here, I describe the effect of the order

of the inter-ρ′n relationship on the goodness of the VI translation. Translation was

conducted simply using three mappings:

1. F−1
va : va → ρ̂′na

2. fab : ρ̂
′
na → ρ̂′nb

3. Fvb : ρ̂
′
nb → v̂b.

This algorithm is identical to the translation by their composite functions (Fvb ◦ fab ◦
F−1
va : va → v̂b).

4.7.2 Inversion of Soil Brightness

Recall that the approximated soil isoline equations include an extent error that

is propagated to affect the accuracy of the inter-VI relationship; however, the ap-

proximated soil isoline equations estimated soil brightness levels that differed from

the true soil brightness levels due to a lack of expressions for the isoline equations.

This observation begs the question: Are the coefficients in the inter-VI relationship

describing the true soil brightness Rs determined by the estimated soil brightness R̂s,

and do these coefficients enhance translation accuracy?

Soil brightness is derived by solving the inverse problem of the isoline equations.

The soil isoline could be searched using R̂s, corresponding to the simulated spectral

points in the rotated subspace, and a simple optimization method that minimized a
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cost function in a rotated reflectance subspace:

R̂s = argmin
Rs

|ρ′r − ρ̂′r(Rs)|, (4.62)

where ρ̂′n(Rs) is the red reflectance predicted by a soil isoline equation in a rotated

subspace (Eq. 2.11 with N -th order truncation),

ρ̂′r(Rs) =
N∑
i=0

pi(Rs)ρ
′i
n, (4.63)

where N is the order of the soil isoline equations.

Note that the order of soil isoline equations contributes two mappings, namely

F−1
va and Fvb. Whereas orders of inter-relationship between ρ′a and ρ′b contributed to

the mapping fab,

ρ̂′nb(Rs) =
M∑
j=0

ui(Rs)ρ
′j
na, (4.64)

where M is the order of the inter-sensor relationship for the translation function of

va.

4.7.3 Results

Three mapping translation algorithms were used to investigate translation errors

in CAI vs. MODIS (Case-1) using the PROSAIL simulator. A regression approach,

which did not include soil brightness effects, was also applied.

v̂regb =
M∑
j=0

uregj vja (4.65)

Here, v̂regb is the VI value estimated for sensor B using a regression method with

coefficients ureg, determined by the correspondence between the VI values for sensors-a

and -b.

Figure 4.8 plots the overall (top) MAD and (bottom) STD for the translation

errors. The results are shown as bar plots grouped by the regression and N -th soil

isoline equations (N = 1, 2, · · · , 5). The orderings of the intersensor relationships M

(N = 1, 2, · · · , 6) from left to right are set in each group. The bar without a face

color indicates the true soil brightness results, whereas the gray bar indicates the

estimated soil brightness results. Note that the colored bars agreed perfectly with
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the un-colored bars using the regression method because the method did not consider

soil brightness effects.

The MAD and STD values gradually decreased as the order of the intersensor

relationship in ρ′n increased, indicating that the accuracy of the soil isoline-based

translation depended on ρ′n. Interestingly, the second- and third-order soil isoline-

based translations displayed enhanced accuracy in terms of the estimated soil bright-

ness. These findings are important for implementing soil isoline-based translation

algorithms.
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Figure 4.8:
Overall (top) MAD and (bottom) STD values for the translation errors.
The results are shown as bar plots grouped by regression and the N -th soil
isoline equations (N = 1, 2, · · · , 5). The order of the intersensor relation-
shipM (N = 1, 2, · · · , 6) is indicated from left to right in each group. The
uncolored bars corresponded to the true soil brightness results, whereas
the gray bars indicated the estimated soil brightness results.
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4.8 Discussion

This study revealed that the inter-sensor VI relationship varied with the soil re-

flectance spectrum beneath the canopy layer. The mechanism by which this relation-

ship varied could be inferred from the fact that the four coefficients of the inter-sensor

VI relationship could all be expressed as functions of the soil reflectance spectrum.

This analytical result revealed the following important facts: (1) a model of the inter-

sensor VI relationship that does not address soil surface classification may retrieve a

relationship that suffers from soil surface spectrum variations within a target regions;

(2) the retrieved inter-sensor VI relationship across a region characterized by a spe-

cific soil spectrum cannot be directly applicable to other regions characterized by a

different soil spectrum; (3) soil spectrum estimates must be made prior to inter-sensor

calibration if the calibration relies on formulations similar to the expressions derived

in this study.

An alternative approach to performing an inter-sensor calibration could rely on

cross-calibrating similar bands, one by one, measured in two distinct sensors. This

approach is by far the simplest, although it has several disadvantages. First, the num-

ber of bands that must be cross-calibrated is equal to the number of bands required by

the algorithm employed. This approach can unfortunately be difficult for large num-

bers of bands. The cross-sensor band-to-band relationships can vary with the land

surface conditions, depending on the canopy and soil spectrum. These dependencies

present the major obstacles to this type of cross-calibration. Recall that inter-sensor

calibration procedures are not equivalent to absolute calibration procedures due to

differences in the band configurations (band center and width characterized by the

spectral response functions). By contrast, the approach introduced in this study

requires only the relationships between ρ′na and ρ′nb, instead of requiring all of the re-

lationships among similar bands measured in the two sensors. The simpler approach

described here is advantageous if a product algorithm requires a large number of

bands.

One drawback to the present approach is that the accuracy of the derived relation-

ship could depend on the accuracy of the model of the relationship between ρ′na and

ρ′nb. This relationship is expressed by a polynomial in ρ′na, and it is subsequently nec-

essary to solve for ρ′nb. In this study, this relationship was modeled using a first-order

polynomial to minimize complexity during the derivation. The use of higher-order

polynomials or more suitable functional forms could improve the accuracy of the inter-

sensor VI relationship; however, such steps would require additional approximations

at some point during the derivation. From a practical perspective, the accompanying
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loss in model simplicity reduced the practicality of the model. Therefore, there is

a trade-off between the practicality and the accuracy in modeling a relationship be-

tween ρ′na and ρ′nb. The choice of relationship must be optimized for ρ′n, which would

require a significant effort beyond the scope of the present discussion. This matter is

worth investigating in a separate study.

This study focused on the influence of soil spectrum as a source of data variation.

The derived VI relationships could also be influenced by biophysical parameters. This

issue should be investigated thoroughly in a future study.

4.9 Conclusions

This study introduced an analytical technique for relating the VIs measured by

two sensors. The relationship was derived using the soil isoline equation, which con-

sisted of a set of reflectance spectra obtained under a constant soil spectrum. First,

the relationship between the VIs measured by two sensors was explained conceptually.

The conceptual relationship was applied to several realistic cases by truncating the or-

der of the polynomials used to describe the soil isoline equations. Finally, the derived

relationships were numerically examined using common radiative transfer models.

The results validated the derived expressions and the applicability of the truncations.

The derived VI relationships and the numerical results also indicated an important

fact, that the inter-sensor relationship among the measured VIs could be influenced

by the soil reflectance spectrum. Although this implication could be obtained from

numerical simulations, the derivations introduced in this study confirmed this fact

analytically.

Further studies are needed to improve the accuracy of the cross-calibration step

based on the derived relationships. Such efforts should be devoted mainly to improv-

ing the accuracy of the relationships between ρ′na and ρ′nb. Such improvements may

also be made by noting the trade-off between accuracy improvements and the prac-

tical utility of the derived VI relationship form. This investigation is left to future

studies.

83



CHAPTER V

Conclusions

Differences among the wavelength band specifications for distinct sensors intro-

duce systematic differences into the values of the spectral vegetation indices (VIs).

These relative errors must be minimized algorithmically after data acquisition based

on the relationships among the measurements. This study introduced a technique

for deriving the relationship between VIs obtained from two sensors. The deriva-

tion proceeded using a parametric form of the soil isoline equations, which relate the

reflectances measured at two different wavelengths.

This study derived a parametric form of the soil isoline equation, in which an index

was used as a common parameter in Chapter 2. Note that the soil isoline equations

assumed regularized spatial conditions of full canopy coverage. Numerical difficulties

associated with singularities in the original subspace were overcame by rotating the

red and NIR axes through an angle equal to the soil line slope. Although the derived

form included an index-like parameter ρ′n, a polynomial of arbitrary order could be

used to represent the soil isoline equation. The derived parametric form suffered

from the drawback that the soil isoline equation implicitly (rather than explicitly)

described the relationship between the red and NIR reflectances.

The proposed isoline equations were compared with those derived using a theoret-

ical framework for validation purposes. The findings from a comparison between the

proposed and theoretically derived results could be summarized as follows: 1) The

soil isoline equation with a polynomial fit was functionally equivalent to the isoline

derived from a radiative transfer model. 2) The previously derived isoline was more

numerically stable and, hence, more suitable than the isoline derived from an RT

model.

Chapter 3 extended this study of the soil isoline equations in the red–NIR sub-

space by deriving an isoline expression under conditions of full canopy coverage. The

parameter FVC was considered by employing the two-endmember LMM. Because
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the model used the FVC parameter explicitly in its formulation, we were able to de-

rive the parametric form of the soil isoline equations using the FVC. The derivations

proceeded carefully by noting the differences between the fully covered case and the

partially covered case in the definitions of the isoline coefficients. I found that the

FVC parameter contributed to the coefficients of the second- and higher-order terms

for both the red and NIR bands, indicating that the FVC parameter only influenced

the higher-order terms.

These findings influenced the derivation of the five approximated cases defined

over a range of truncation orders in the red and NIR reflectances. The validity of the

derived expression was investigated by conducting a series of numerical experiments

using PROSAIL. The numerical results revealed that the errors in the approximated

isolines decreased as the truncation order increased. These results clearly indicated

that the isoline equations could be improved by accounting for the FVC parameter

explicitly.

This study introduced an analytical technique for relating the VIs measured by

two sensors in Chapter 4. The relationship was derived using the soil isoline equation,

which consisted of a set of reflectance spectra obtained under a constant soil spec-

trum. First, the relationship between the VIs measured by two sensors was explained

conceptually. The conceptual relationship was applied to several realistic cases by

truncating the order of the polynomials used to describe the soil isoline equations.

Finally, the derived relationships were numerically examined using the radiative trans-

fer models. The results validated the derived expressions and the applicability of the

truncations. The derived VI relationships and the numerical results also indicated an

important fact, that the inter-sensor relationships among the measured VIs could be

influenced by the soil reflectance spectrum. Although this result could be obtained

from the numerical simulations, the derivations introduced in this study confirmed

this fact analytically.

Finally, I concluded that the soil isoline concept provided an effective tool for

analyzing the wavelength effect in VIs. Two types of soil isolines must be further in-

vestigated to improve our understanding of the inter-VI relationship results, namely:

(1) soil isoline equations in red-NIR space, and (2) inter-ρ′n relationships (the equa-

tion specific to a pair of sensors). Further efforts must be examined to demonstrate

the utility of these isoline models in analyzing satellite imagery and improving the

accuracy of the cross-calibration step, although such improvements may also be made

by noting the trade-off between accuracy improvements and the practical utility of

the derived VI relationship form.
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APPENDIX A

Analysis of the Soil Isolines in the Wavelength

Range 400-2500nm

A.1 Soil Isolines in the Wavelength Range 400-2500nm

Section 2.7 validated the soil isoline results derived from the red and NIR re-

flectance subspace through a comparison with the expression obtained using additive

methods. A displacement analysis was used to investigate the limitations on the pro-

posed derivation for reflectance subspaces other than the red and NIR wavelength

pair. Note that if the proposed rotation steps were effective in avoiding singularities

in cases other than the red-NIR case, soil isolines across a broad range of spectral

domains could simultaneously be derived using a single algorithm.

Assume that the soil isolines/trajectories in a reflectance subspace are constructed

from measurements at two different wavelengths (λ1, λ2 ∈ [400−2500nm]) correspond-

ing to the soil brightness and leaf area index (LAI). Regardless of the wavelength pair,

all soil isolines move from a baseline, called the soil line. The soil line equation de-

scribes the relationship between the soil reflectances,

Rsλ2 = a(λ1, λ2)Rsλ1 + b(λ1, λ2), (A.1)

where a(λ1, λ2) and b(λ1, λ2) are the slope and offset of the soil line in a subspace

constructed from two reflectances at λ1 and λ2, andRsλ is the soil reflectance spectrum

at a wavelength λ, respectively.

The top-of canopy reflectance (TOC) vector ρρρ in the λ1-λ2 subspace is defined as

ρρρ = (ρλ1 , ρλ2)
t, (A.2)
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where ρsλ is the TOC reflectance spectrum at a wavelength of λ. The methods

proposed in this study used an affine transformation of the reflectance subspace along

the soil line,

ρρρ′ = (ρ′λ1
, ρ′λ2

)t (A.3)

= T (θ)(ρρρ− µµµ), (A.4)

where ρρρ is the reflectance vector after the transformation, T (θ) is a rotation matrix

through the angle corresponding to the soil line slope, and µµµ is a vector corresponding

to the soil line offset. θ and µµµ are defined as

θ = arctan(a(λ1, λ2)), (A.5)

µµµ = (0, b(λ1, λ2))
t. (A.6)

A.2 Displacement Vectors of the Soil Isolines

A displacement vector analysis of the soil isolines improved our understanding of

the behavior of the soil isolines over a wide range of spectral domains, from 400 to

2500 nm. Here, the PROSAIL of numerical models was used to simulate the TOC

reflectance spectra. The reflectance spectra in this numerical study were expressed as

functions of the soil brightness and the LAI. The other input parameters were fixed

as described in Chapter 3. Six LAI levels were prepared from five sets, from 0.5 to

3.7 in 0.8 intervals and assuming zero LAI (no canopy case). The soil brightness level

was determined by the psoil index, which was set to 0, 0.5 or 1.0.

Three steps were used to obtain the displacement vectors for the soil isolines in

the numerical experiments.

1. Choose reflectance spectrum ρρρ in the subspace between λ1 = x and λ2 = y in

the 400−2500[nm] range, and in 50 nm intervals.

2. Retrieve the soil line coefficients (slope and offset) and transform ρρρ into ρρρ′ using

Eq. (A.4).

3. Calculate the displacement vectors δ′ as follows,

δδδ′(psoil(i),LAI(j)) = ρρρ′(psoil(i),LAI(j + 1))− ρρρ′(psoil(i),LAI(j)), (A.7)
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Figure A.1:
Illustration of the displacement vectors δ′ of the soil isolines for each psoil
and LAI. The Y-axis of the vector field corresponds to the soil line slope.

where psoil(i) and LAI(j) are the psoil and LAI corresponding to the i- and j-th

levels, respectively.

Figure A.1 presents the displacement vectors δ′ of the soil isolines in three types

of subspace for each psoil and LAI level. The Y-axis of the vector field corresponds

to the soil line slope. In other words, the parallel direction is shown for the case of a

vector directed along the Y-axis. Here, the X-axis is orthogonal to the soil line.

The blue and red colors in the figure indicate distinct directions in increments of

the LAI level. The yellow directions at psoil = 1.0 are, regardless of the LAI value,

accounted for by the Y-axis element.

A.3 Results

The angle of the displacement vectors is a key factor for understanding the trends

in the soil isolines of various subspaces. Note that the trend in the direction along the

soil line (Y-axis in Fig. A.1) produced singularities. The overall displacement vector

(between zero LAI and 3.7 LAI) permitted detection of the conditions suspected

of producing a singularity, as in the yellow case shown in Fig. A.1. The overall

displacement vectors ∆∆∆′ = (∆x,∆y) were calculated simply by adding each element

of the LAI. Note that this experiment included three soil brightness levels in the psoil

(psoil = (0, 0.5, 1)). Furthermore, the angles corresponding to the three soil brightness
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Figure A.2:
Color plots of the maximum angle Θdisp.(λ1 = x, λ2 = y) between the
displacement vectors ∆ and the soil line, in radians.

levels at each soil isoline, θdisp.(psoil) were obtained using the overall displacement

vectors.

θdisp.(psoil) = arctan

(
∆y

∆x

)
(A.8)

The closer the angle was to 90 degrees, the more parallel the soil isoline were in

the soil line, which promoted singularity formation. This investigation examined the

conditions that contributed to singularity formation; therefore, the maximum angle

value was adopted.

Θdisp.(λ1, λ2) = max θdisp.(psoil) (A.9)

The maximum angle of the displacement vectors Θdisp.(λ1, λ2) at each wavelength

pair (λ1 = x, λ2 = y) is shown in Fig. A.2. The figure is colored from 4π/9 to

π/2. The spectral domains in yellow indicate the conditions suspected of yielding

singularities as a result of transformation to the reflectance subspace.

Caution is needed to derive the soil isoline equations at some wavelengths. Further

numerical experiments must be explored for better understanding of the conditions

that contribute to the measured spectral responses. The SRFs effect must also be

considered for any analysis of actual multispectral data.
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[23] E. F. Vermote, D. Tanré, J.-L. Deuze, M. Herman, and J.-J. Morcette, “Second
simulation of the satellite signal in the solar spectrum, 6S: An overview,” IEEE
Trans. Geosci. Remote Sens., vol. 35, no. 3, pp. 675–686, 1997.

[24] H. Kobayashi and H. Iwabuchi, “A coupled 1-D atmosphere and 3-D canopy
radiative transfer model for canopy reflectance, light environment, and pho-
tosynthesis simulation in a heterogeneous landscape,” Remote Sens. Environ.,
vol. 112, no. 1, pp. 173–185, 2008.

[25] C. F. Jordan, “Derivation of leaf-area index from quality of light on the forest
floor,” Ecology, pp. 663–666, 1969.

[26] J. Rouse, R. Haas, J. Schell, and D. Deering, “Third ERTS symposium,” NASA
SP-351, vol. 1, pp. 309–317, 1973.

[27] A. J. Richardson and C. Weigand, “Distinguishing vegetation from soil back-
ground information,” Photogramm. Eng. Remote Sens., vol. 43, no. 12, 1977.

[28] J. Clevers, “The derivation of a simplified reflectance model for the estimation
of leaf area index,” Remote Sens. Environ., vol. 25, no. 1, pp. 53–69, 1988.

[29] A. R. Huete, “A soil-adjusted vegetation index (SAVI),” Remote Sens. Environ.,
vol. 25, no. 3, pp. 295–309, 1988.

[30] A. J. Richardson and J. H. Everitt, “Using spectral vegetation indices to esti-
mate rangeland productivity,” Geocarto International, vol. 7, no. 1, pp. 63–69,
1992.

[31] J. Qi, A. Chehbouni, A. Huete, Y. Kerr, and S. Sorooshian, “A modified soil
adjusted vegetation index,” Remote Sens. Environ., vol. 48, no. 2, pp. 119–126,
1994.

[32] G. Rondeaux, M. Steven, and F. Baret, “Optimization of soil-adjusted vegeta-
tion indices,” Remote Sens. Environ., vol. 55, no. 2, pp. 95–107, 1996.
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