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PAPER
Using Scattered X-Rays to Improve the Estimation Accuracy of
Attenuation Coefficients: A Fundamental Analysis

Naohiro TODA†a), Member, Tetsuya NAKAGAMI††b), Nonmember, Yoichi YAMAZAKI†††c), Member,
Hiroki YOSHIOKA†d), Nonmember, and Shuji KOYAMA††††e), Member

SUMMARY In X-ray computed tomography, scattered X-rays are gen-
erally removed by using a post-patient collimator located in front of the
detector. In this paper, we show that the scattered X-rays have the po-
tential to improve the estimation accuracy of the attenuation coefficient in
computed tomography. In order to clarify the problem, we simplified the
geometry of the computed tomography into a thin cylinder composed of
a homogeneous material so that only one attenuation coefficient needs to
be estimated. We then conducted a Monte Carlo numerical experiment on
improving the estimation accuracy of attenuation coefficient by measuring
the scattered X-rays with several dedicated toroidal detectors around the
cylinder in addition to the primary X-rays. We further present a theoretical
analysis to explain the experimental results. We employed a model that
uses a T-junction (i.e., T-junction model) to divide the photon transport into
primary and scattered components. This division is processed with respect
to the attenuation coefficient. Using several T-junction models connected
in series, we modeled the case of several scatter detectors. The estimation
accuracy was evaluated according to the variance of the efficient estima-
tor, i.e., the Cramer–Rao lower bound. We confirmed that the variance
decreases as the number of scatter detectors increases, which implies that
using scattered X-rays can reduce the irradiation dose for patients.
key words: X-ray CT, scattered X-rays, accuracy, Monte Carlo simulation,
Cramer–Rao lower bound

1. Introduction

X-ray computed tomography (CT) is a medical diagnostic
technique that is used to reconstruct cross-sectional images
of an object from X-ray intensities measured with a rotat-
ing X-ray source-detector pair [1]. In CT, images are re-
constructed from the pointwise linear attenuation coefficient
(hereafter referred to as the attenuation coefficient) of the ob-
ject, which is typically estimated by measuring the number
of photons that pass directly through the object. Therefore,
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the existence of scattered X-rays is the main cause of artifacts
[1]–[3] in the reconstructed images. Many scatter-correction
methods have been proposed to prevent the occurrence of
artifacts. The anti-scatter grid (or post-patient collimator)
[1], [4], [5] and beam-stop arrays [6]–[8] use hardware that
controls the X-ray beam. Two types of scatter-correction
approaches are based on software: a kernel-based method
[9], [10] and a technique based on Monte Carlo simula-
tion [10]–[13]. These scatter-correction strategies involve
subtracting the scatter estimations from the original projec-
tions; that is, the scattered X-rays are discarded. Ordinary
CT removes scattered X-rays because current reconstruc-
tion algorithms assume that the projection data consist of
only primary X-rays owing to limited computer capabilities.
Hereinafter, we refer to methods that were derived under
the assumption of using only the primary X-rays as primary
methods.

Because scattered X-rays are caused by objects, they
provide information about them. Based on this perspec-
tive, several researchers have investigated tomographic imag-
ing with scattered X-rays [14]–[21]. In particular, Norton’s
modality [17] and its improvements [18]–[21] involve a new
concept. However, this is regarded as a different modality
from conventional X-ray CT, and the introduction of scat-
tered X-rays into conventional X-ray CT has rarely been
discussed.

In recent years, methods using a total simulation of
the CT geometric structure and interactions between X-rays
and substances have been studied with advances in com-
puter capabilities [22]–[24]. In such methods, an image is
reconstructed by letting the virtually generated projection
data in a computer converge to the measured projection data
using an iterative optimization algorithm. We refer to these
methods as simulated projection-based methods. Although
this approach can also include the geometries of the grid,
the introduction of scattering phenomena including multiple
scattering into the simulation model gets rid of the restric-
tion where only the primary X-rays are used. Therefore, the
simulated projection-based method has the potential to esti-
mate the attenuation coefficient by using scattered X-rays in
addition to primary X-rays.

At this point, a question arises as to whether the recon-
struction accuracy of the simulated projection-based method
using projection data including scattered X-rays can achieve
the accuracy given by a primary method with an ideal grid.
Furthermore, if scattered X-rays contain information inde-
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pendent from information provided by primary X-rays, the
accuracy of attenuation coefficients estimated with both pri-
mary and scattered X-rays should be better than that esti-
mated with primary X-rays only. However, so far we have
found no research in the literature that addresses such issues.

In order to realize novel reconstruction schemes, our
purpose in this study was to demonstrate the existence of
a case where the accuracy is improved by measuring the
scattered X-rays in addition to the primary X-rays. How-
ever, under the premise that the simulated projection-based
method is used, the current CT geometry is too complicated
for numerical experiments with currently available comput-
ers if scattered X-rays are introduced. In addition, such a
situation prevents fundamental consideration.

Even if it does not lead to immediate application, once
such a principle is confirmed through a simplified problem,
it is expected to become a driving force for creating more
practical applications in the future. In this study, we simpli-
fied the CT geometry as much as possible without losing the
essence of the effect of the scattered X-rays. We observed
the improved accuracy through a numerical experiment with
Monte Carlo simulations using the simplified geometry. In
order to confirm the fundamental concept more firmly, we
present a theoretical analysis to explain the results of the nu-
merical experiment based on mathematical statistical meth-
ods.

2. Simplification of CT Geometry

In order to clearly demonstrate that the accuracy is improved
by adding the measurement of scattered X-rays, we set the
following two conditions for simplification.

C-1 The estimation accuracy of the attenuation coefficient
should be compared for the case of measuring the pri-
mary X-rays only and the case of measuring both pri-
mary and scattered X-rays.

C-2 The accuracy should have a variable indicating the in-
cident X-ray photon number.

Condition C-1 is the purpose itself. Condition C-2 is
necessary to clearly show the relation between the estimation
accuracy of the attenuation coefficient—namely, the image
quality of the reconstruction—and the X-ray dose. If these
conditions are satisfied, the simplest geometry possible is
preferred.

As shown in Fig. 1(a), in a conventional CT, cone-
beam X-rays are irradiated, and the primary X-rays that pass
through an object are measured with a detector array. The
scattered X-rays are blocked by the grid installed in front of
the detector. When the grid is removed, the scattered X-rays
reach the detector. In order to capture the side-scatter and
back-scatter as well, we assumed that dedicated detectors (re-
ferred to as scatter detector) are installed around the object,
as shown in Fig. 1(b).

By applying a simulated projection-based method to a
CT equipped with such a structure, the scattered X-rays can
be introduced into estimating the attenuation coefficients.

Fig. 1 Simplification of CT geometry.

However, as mentioned above, such a CT geometry is too
complicated for a numerical experiment to be conducted.
During the theoretical derivation, furthermore, the existence
of other factors makes it difficult to focus only on the scat-
tered X-rays as a control factor for the accuracy.

Here, we simplified the geometry by reducing the num-
ber of elements comprising the object to only one. The
target object was a thin cylinder composed of homogeneous
material, as shown in Fig. 1(c). This cylinder was exposed
to a pencil-beam X-ray. Primary X-ray photons were mea-
sured by a cylindrical detector (referred to as the primary
detector) with a smaller diameter than the thin cylinder. Be-
cause the scattered X-ray photons radiated around the cylin-
der isotropically, we used several scatter detectors with a
toroidal structure for measurement, as illustrated in Fig. 2.
Both scatter and primary detectors were assumed to count
photons without loss. The photons were assumed to disap-
pear instantaneously when counted by the detectors.

This geometry requires no rotation. Both the diame-
ter of the thin cylinder and gap between the cylinder and
scatter detector were set sufficiently small. Consequently,
the probability of multiple scattering was kept fairly low,
and any scattered photon that deviated from the pencil beam
line, even if by a small angle, would bemeasured by the near-
est scatter detector from the scattered point without crosstalk
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among scatter detectors. Because almost no scattered X-rays
arrived at the primary detector with this geometry, scatter
correction was not required. If only the primary detector is
used, this geometry is the best situation for measuring the
attenuation coefficient from the viewpoint of conventional
scatter correction. Our interest was whether measuring scat-
tered X-rays would improve the estimation accuracy for the
attenuation coefficient without increasing the number of in-
cident photons. In other words, we considered whether a
simulated projection-based method using scattered X-rays
would improve the performance beyond that of the primary
method in this case. Hereinafter, we refer to this geometry
as the homogeneous thin cylinder.

In the next section, we set up this geometry concretely
and conducted a numerical experiment.

3. Numerical Experiment on the Simplified Geometry

We performed a numerical experiment to observe the ef-
fect of using scattered X-rays on the geometry of the ho-
mogeneous thin cylinder shown in Fig. 2. The attenuation
coefficient was estimated with a simulated projection-based
method. We employed a Monte Carlo simulation to obtain
the projection data.

3.1 Acquisition of the Measured Projection Data

Let N be the set of non-negative integers, i.e., N =
{0, 1, 2, · · · }, and R be the set of real numbers. The length of
the homogeneous thin cylinder was fixed to L (L ∈ R, 0 <
L). We used a primary detector and ` (` ∈ N, ` ≤ `max)
scatter detectors, where `max (`max ∈ N) denotes the maxi-
mum number of scatter detectors. We assumed that incident
X-ray photons have the same energy. The attenuation co-
efficient of the homogeneous thin cylinder at this energy is
denoted as µ∗, (µ∗ ∈ R, 0 < µ∗).

In the case ` = 0, no scatter detector was used. Namely,
this case corresponds to the primary method. In order to
evaluate the accuracy, Mex (Mex ∈ N, 1 ≤ Mex) indepen-
dent estimation processes were performed for each ` (≥ 1).
The length of each scatter detector was set to L/`; that
is, in the case of 2 ≤ `, the scatter detectors were pro-
duced by dividing a long scatter detector with the length L.
In each estimation process, the Monte Carlo method pro-
vided by EGS5 [27] was used, and Ip (Ip ∈ N, 1 ≤ Ip)
photons were assumed to be incident with the homoge-
neous thin cylinder. We defined ` + 1 dimensional vec-
tors d j = (d1, j, d2, j, · · · , di, j, · · · , d`+1, j )T (i ∈ N, 1 ≤ i ≤

Fig. 2 Homogeneous thin cylinder.

` + 1, j ∈ N, 1 ≤ j ≤ Mex, (·)T means the transpose).
In this notation, d`+1, j (d`+1, j ∈ N, d`+1, j ≤ Ip) de-
notes the measured number of photons at the primary de-
tector. In the cases using scatter detectors (for 1 ≤ `),
di, j (di, j ∈ N, di, j ≤ Ip , 1 ≤ i ≤ `) denote the measured
number of photons at the ith scatter detector.

3.2 Generation of Simulated Projection Data

When executing the simulated projection-based method, we
needed to generate projection data with a virtual measure-
ment process in a computer. We employed the Monte Carlo
simulation with the same geometry used for the measure-
ment data acquisition described in the previous Sect. 3.1.
For a given attenuation coefficient µ, (µ ∈ R, 0 < µ)
and number of incident photons Ir (Ir ∈ N, 1 ≤ Ir), this
generator outputted an ` + 1 dimensional vector v(µ, `) =
(v (µ,`)

1 , v
(µ,`)
2 , · · · , v

(µ,`)
i , · · · , v

(µ,`)
`+1 )T (v (µ,`)

i ∈ N, v
(µ,`)
i ≤

Ir).

3.3 Matching Criterion

The log-likelihood is desirable as a matching criterion, or
the measure of closeness between d j and v(µ, `). However,
because it is difficult to derive the strict log-likelihood in
actual situations, we used a pseudo log-likelihood. The
number of photons entering a detector can be approximated
as a Poisson random variable [1].

The probability function of each di, j is given by

p(di, j ) =
λ
di, j
i exp(−λi)

di, j!
, (1)

where λi (λi ∈ R, 0 < λi) is the Poisson parameter of ith

detector ( (` + 1)th corresponds to the primary detector).
Here, we introduce an approximation that the measure-

ments in all detectors are independent of each other. Then,
their joint probability function is given as

p(d j ) =
`+1∏
i=1

λ
di, j
i exp(−λi)

di, j!
. (2)

Thus, the log-likelihood function Lh(λ | d j ) is derived by
taking the logarithm of the above joint probability function
and ignoring constant terms:

Lh(λ | d j ) =
`+1∑
i=1
−λi + (log λi)di, j, (3)

where λ = (λ1, λ2, · · · , λ`+1)T is a positive real-value ` + 1
dimensional parameter vector. Because an approximation
has been introduced, this is a pseudo log-likelihood.

In the estimation process of the simulated projection-
based method, we needed to determine the value of
λ. For a given µ, we used the notation λ̂(µ) =
(λ̂1(µ), λ̂2(µ), · · · , λ̂`+1(µ))T to estimate λ as
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λ̂i (µ) = v (µ,`)
i

Ip

Ir
. (4)

By substituting the above λ̂i for λi in Eq. (3), we could
evaluate the closeness. Because Ir can take any number
permitted by the capacity of the computer, a larger Ir is
preferable to increase the accuracy. Likelihood definitions
of the Poisson distribution similar to that presented above
have been used in several iterative approximation algorithms
[25], [26].

3.4 Procedure for Estimating the Attenuation Coefficient

The attenuation coefficient was estimated by the following
procedure with the permissible error ε. In this problem, the
unknown parameter is the attenuation coefficient µ; thus, we
solved a one-dimensional optimization problem by using a
golden section search [28]. When executing this procedure,
we obtained an estimation of the attenuation coefficient for
each j and `. Thus, the estimated coefficient is denoted as
µ̂ j,` .
1. Initialize the search range [µmin, µmax].
2. Calculate µleft and µright given in Eq. (5).

τ = (1 +
√

5)/2
µleft = µmin + (µmax − µmin)/(1 + τ), (5)
µright = µmax − (µmax − µmin)/(1 + τ).

3. If |µmax− µmin |< ε holds, then calculate µ̂← (µmin+ µmax)/2
and stop.

4. Otherwise, calculate λ̂(µleft) and λ̂(µright) via a Monte Carlo
simulation Ir times.

5. Calculate Lh(λ̂(µleft) | d j ) and Lh(λ̂(µright) | d j ) with the fol-
lowing parameters:

6. If Lh(λ̂(µleft) | d j ) < Lh(λ̂(µright) | d j ) holds, then update the
attenuation coefficient µmin ← µleft; otherwise, µmax ← µright.

7. Go back to step 2.

3.5 Accuracy Evaluation

If an estimator is unbiased, evaluating the accuracy with the
variance is sufficient. However, there is a possibility that a
bias error is included. Thus, in this numerical experiment,
we evaluated the accuracy by using the root mean square
error:

Err (`) =

√√√
1

Mex

Mex∑
j=1

(µ∗ − µ̂ j,` )2, (6)

where µ∗ denotes the true attenuation coefficient as described
in Sect. 3.1.

3.6 Experimental Conditions

The diameter of the homogeneous thin cylinder was 0.05 cm,

its length was 20.0 cm, and its density was 1.5 times that of
water. The maximum number of NaI toroidal scatter detec-
tors `max was set to 10. The inside diameter of the toroidal
scatter detectors was 0.06 cm, and the outside diameter was
0.07 cm. Primary X-rays were measured with an ordinary
cylindrical NaI detector having a diameter of 0.01 cm and
length of 0.05 cm. The X-ray tube, thin cylinder, and pri-
mary detector were assumed to be located on a straight line.
The distance from the X-ray tube origin to the center of the
thin cylinder was 11.0 cm, and the distance from the center
of the thin cylinder to the primary detector was 11.05 cm.
The number of photons Ip used to collect the projection data
at a single energy of 100 keV was set as 106. The number
of photons Ir used in the estimation process with the Monte
Carlo simulation was set to 107, and Mex was 103. The true
attenuation coefficient was 0.25919455, which was obtained
by the “CALLOption” provided in EGS5, wherewe included
Rayleigh, Compton, and coherent scattering but omitted the
reduction due to bound electrons. In the estimating proce-
dure, the permissible error was ε = 10−6, and the initial
search range was [µmin, µmax] = [0.2, 0.4].

3.7 Results of the Numerical Experiment

The value of Err (`) is shown in Fig. 3. Although the error
with one scatter detector (` = 1) seemed to be the same as
that of the primarymethod, it decreased extremely when sev-
eral scatter detectors were used. Figure 4 shows a histogram
of µ estimated with only the primary detector. Figure 5
shows a histogram of the estimation with both scatter de-
tectors (` = 10) and the primary detector. The width of
the distribution in Fig. 5 is less than that in Fig. 4. That is,
the estimation accuracy of the attenuation coefficient was
improved by measuring the scattered X-rays with several
dedicated scatter detectors, even though the algorithm was
derived by using approximations.

These results demonstrate the possible existence of a
case where scattered X-rays are useful for estimating the at-
tenuation coefficient. However, because this was a numerical
experiment based on random numbers, the following ques-
tions arose. The error decreased up to ` = 4, but it fluctuated
when ` was more than 5. Was this due to random numbers?

Fig. 3 Error with respect to `.
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Fig. 4 Estimated distribution of µ using primary X-rays only.

Fig. 5 Estimated distribution of µ using both scattered and primary X-
rays (` = 10).

Under ideal conditions (i.e., scattered photons at any angle
are counted by the nearest detector from the scatter point,
the number of estimation processes goes to infinity, multi-
ple scattering does not happen, each optimization process
is sufficient), is this behavior monotonically decreasing? If
it is monotonic, where is the limit? Despite the fact that
the scattered photons were measured, is the error of one
scatter detector case exactly the same as that of the primary
method? Even the exact maximum likelihood method gen-
erates a bias in cases with a small sample size, but what is
the influence of the pseudo-likelihood? Although we saw a
dramatic improvement in accuracy at 2 ≤ `, is this a repro-
ducible and obvious phenomenon in the first place? If so,
some inequality should be established.

However, we found no theoretical work that answers
these questions from a statistical aspect. If a case exists such
that scattered X-rays is effective, it can be a milestone for
future applications, even if it is derived in an ideal situation.
In the next section, to explain the results of the numeri-
cal experiment, we present a theoretical analysis based on
mathematical statistical methods and introduce further sim-
plification under conditions C-1 and C-2.

4. Theoretical Analysis for a Homogeneous Thin Cylin-
der

In the previous numerical experiment, some approximations
for the procedure or likelihood were introduced assuming

Fig. 6 T-junction model.

actual geometry. In our theoretical analysis here, we further
simplify the geometry to treat strictly the probability function
and accuracy evaluation.

4.1 Definitions and Evaluation Criterion for Accuracy

First, assuming a scatter detector captures all the scat-
tered photon within its region, we can simplify the three-
dimensional geometry into a one-dimensional symbolic rep-
resentation by using a T-junction, as shown in Fig. 6. We
ignore the multiple scattering and photoelectric absorption
to derive the probability function strictly based on the bi-
nomial distribution as follows. The definitions of N, R, L
and µ are the same as those in the previous section. For
n (n ∈ N, 1 ≤ n) incident photons, the number of primary
photons x (x ∈ N, x ≤ n) that pass directly through the
T-junction is a random variable following a binomial distri-
bution B(x | n, p) [29]:

B(x | n, p) =
n!

x! (n − x)!
px (1 − p)n−x,

where p (p ∈ R, 0 < p < 1) is the probability that a pho-
ton passes directly through the T-junction. This probability
parameter is described by the length and attenuation coeffi-
cient of the homogeneous thin cylinder, i.e., p = exp (−µL).
For simplicity, we assume that all photons that do not pass
directly through the homogeneous thin cylinder are mea-
sured as scattered photons. In Fig. 6, y (y ∈ N, y ≤ n) is a
random variable indicating the number of scattered photons
(y = n− x). We refer to this model as the T-junction model.

The cases containing several scatter detectors, as shown
in Fig. 2, are modeled by several T-junction models con-
nected in series, as shown in Fig. 7. We refer to this as the
k-chained T-junction model (k ∈ N, 1 ≤ k). In this model,
the probability parameter of each T-junction model is given
by

p = pk (µ) = exp
(
−µ

L
k

)
. (7)

Here, we define the finite set Zn by

Zn = {x ∈ N | x ≤ n} (8)

and its k direct products Zkn (k ∈ N, 1 ≤ k) by

Zkn = Zn × Zn × · · · × Zn (k times). (9)

With these definitions, the scattered X-ray photons are
given by the measured vector ky ∈ Zkn, which is represented
as
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Fig. 7 k-chained T-junction model.

ky = (y1, y2, · · · , yk )T , yi ∈ Zn, i ∈ {1, 2, · · · , k}. (10)

Because the arrival of photons at a detector is a stochas-
tic phenomenon, the estimated attenuation coefficients fluc-
tuate randomly. In the numerical experiment, we employed
the mean squared error. As mentioned in the previous sec-
tion, when the estimated parameter is unbiased, the accu-
racy is generally evaluated according to the variance. If the
simulated projection-based method and primary method are
assumed to provide satisfactory efficiency, the variances are
given as the Cramer–Rao lower bound [30], which is the
lower bound on the variance of the unbiased estimator.

A feature of this bound is that, if the stochastic structures
(i.e., probability function) of methods differ, their accuracy
can be compared analytically without explicitly constructing
an estimator. Fortunately, the stochastic structures of the pri-
mary method and simulated projection-based method with
several scatter detectors differ from each other, whereas the
number of incident photons is identical. Consequently, we
adopted this bound as a criterion for evaluating the accuracy
improvement and refer to it simply as variance. The variance
of the k-chained T-junction model V(k) is given by

V(k) = −
1

N · E
[
∂2

∂µ2 log ( fk (ky, x | n, pk (µ)))
] , (11)

where fk (ky, x | n, pk (µ)) is the probability function of the
k-chainedT-junctionmodel, x and ky are randomvariables, µ
is the attenuation coefficient to be estimated, E[·] denotes the
expectation operator, and N (N ∈ N, 1 ≤ N ) is the number
of trials. In the following sections, we derive and analyze
the properties of this variance step by step, including that of
primary method.

4.2 Derivation of the Variance V(k)

4.2.1 Case k = 1

We first consider the case k = 1. Because the number of pri-
mary photons x in a 1-chained T-junction model obeys a bi-
nomial distribution, its probability function f (x | n, p1(µ))
is given by

f (x | n, p1(µ)) =
n!

x! (n − x)!
(p1(µ))x (1 − p1(µ))n−x . (12)

Because the number of scattered photons y1 is

y1 = n − x, (13)

the probability function f1(y1, x | n, p1(µ)) is written as

f1(y1, x | n, p1(µ))

=

{
n!

x! y1! (p1(µ))x (1 − p1(µ))y1, (y1 = n − x)
0, (otherwise)

. (14)

Equation (14) represents the joint probability of y1 and
x. Generally, the expectation value of a function φ(y1, x) is
given by

E
[
φ(y1, x)

]
=

∑
(y1,x)∈Z2

n

φ(y1, x) f1(y1, x | n, p1(µ)). (15)

Our probability function f1(y1, x | n, p1(µ)) is zero
over a large area. Consequently, the summation in Eq. (15)
can be restricted to a narrow region. We can calculate the
expectation value of Eq. (15) in the set S1 = {(y1, x) ∈ Z2

n |

y1 = n − x}. Thus, we rewrite Eq. (15) as

E
[
φ(y1, x)

]
=

∑
(y1,x)∈S1

φ(y1, x) f1(y1, x | n, p1(µ))

=

n∑
x=0

φ(n − x, x) f1(n − x, x | n, p1(µ)). (16)

Here, in the set S1, the second derivative of the function
log ( f1(y1, x | n, p1(µ))) with respect to µ is given by

∂2

∂µ2 log ( f1(y1, x | n, p1(µ)))

=
∂2

∂µ2

[
log

(
n!

x! (n − x)!

)
+ x log (p1(µ))

+ (n − x) log (1 − p1(µ))
]

= −
L2 exp (−µL)(

1 − exp (−µL)
)2 (n − x). (17)

Therefore, by applying Eq. (17) to the denominator of
Eq. (11), we obtain

V(1) = −
1

N · E
[
∂2

∂µ2 log ( f1(y1, x | n, p1(µ)))
]

=
1

NL2 exp (−µL)
(1−exp (−µL))2 (n − E [x])

=
1 − exp (−µL)

nN L2 exp (−µL)
. (18)

The variance in the casewhere only the primary photons
are measured (i.e., the primary method), which is denoted
by Vp , can be derived immediately by using Eq. (12):

Vp = −
1

N · E
[
∂2

∂µ2 log ( f (x | n, p1(µ)))
]

=
1 − exp (−µL)

nN L2 exp (−µL)
. (19)

We can see that Vp = V(1). This fact, which we also
observed in the numerical experiment, indicates that the ad-
ditional measurement of scattered X-rays does not influence
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Fig. 8 Two-chained T-junction model.

the arbitrary expected value in the primary method. Con-
sequently, in the case k = 1, even if scattered photons are
measured, no improvement in accuracy is expected.

4.2.2 Case k = 2

In this section, we consider the value of measuring the scat-
tered photons in the case k = 2. Let ξ be the number of
primary photons of the first (left) T-junction, as shown in
Fig. 8.

Here, q(y2, x, ξ | n, p2(µ)) denotes the joint probabil-
ity function of (y2, x, ξ). Then, the conditional probability
function f1(y2, x | ξ, p2(µ)) given ξ is

f1(y2, x | ξ, p2(µ)) =
q(y2, x, ξ | n, p2(µ))
f1(y1, ξ | n, p2(µ))

. (20)

Thus, q(y2, x, ξ | n, p2(µ)) is represented as

q(y2, x, ξ | n, p2(µ))
= f1(y1, ξ | n, p2(µ)) · f1(y2, x | ξ, p2(µ)). (21)

By substituting n − y1 for ξ, we obtain

q(y2, x, n− y1 | n, p2(µ)) = q(y2, x, ξ | n, p2(µ)). (22)

Therefore, the probability function of the two-chained
T-junction model is given by

f2(2y, x | n, p2(µ))
= q(y2, x, n − y1 | n, p2(µ))
= f1(y1, ξ | n, p2(µ)) · f1(y2, x | ξ, p2(µ)), (23)

where 2y = (y1, y2)T . Note that f2(2y, x | n, p2(µ)) is zero
everywhere except for the set

S2 =



(2y, x) ∈ Z3
n

0 ≤ y1 ≤ n,
0 ≤ y2 ≤ n − y1,
0 ≤ x ≤ n − y1 − y2



.

The probability functions f1(y1, ξ | n, p2(µ)) and
f1(y2, x | ξ, p2(µ)) are given as follows:

f1(y1, ξ | n, p2(µ))

=
n!

y1! ξ!
(p2(µ))ξ (1 − p2(µ))y1

=
n!

y1! (n − y1)!
(p2(µ))n−y1 (1 − p2(µ))y1, (24)

f1(y2, x | ξ, p2(µ))

=
ξ!

x! y2!
(p2(µ))x (1 − p2(µ))y2

=
ξ!

x! (ξ − x)!
(p2(µ))x (1 − p2(µ))ξ−x

=
(n − y1)!

x! (n − y1 − x)!
(p2(µ))x (1 − p2(µ))n−y1−x . (25)

In the set S2, f2(2y, x | n, p2(µ)) is represented as

f2(2y, x | n, p2(µ))
= f1(y1, ξ | n, p2(µ)) · f1(y2, x | ξ, p2(µ))

=
n!

x! (n− y1−x)! y1!
(p2(µ))x+n−y1 (1 − p2(µ))n−x . (26)

Otherwise (in the complementary set of S2, i.e., Sc2 =
Z3
n\S2), f2(2y, x | n, p2(µ)) = 0.

Similarly to the case k = 1, the expectation value of the
function φ(2y, x) in the set S2 is given by

E
[
φ(2y, x)

]
=

∑
(2y,x)∈S2

φ(2y, x) f2(2y, x | n, p2(µ))

=

n∑
y1=0

n−y1∑
x=0

φ(2y, x) f2(2y, x | n, p2(µ)). (27)

Then, V(2) is derived as

V(2) =
4
(
1 − exp (−µL/2)

)
nN L2 (

1 + exp (−µL/2)
)

exp (−µL/2)
. (28)

We have

V(1) − V(2) =
1 − exp (−µL)

nN L2 exp (−µL)

−
4
(
1 − exp (−µL/2)

)
nN L2 (

1 + exp (−µL/2)
)

exp (−µL/2)

=

(
1 − exp (−µL/2)

)3

nN L2 (
1 + exp (−µL/2)

)
exp (−µL)

> 0. (29)

Therefore, the following statement holds:

V(1) > V(2). (30)

Equation (30) indicates that the accuracy is improved if
the scattered photons y1 aremeasured alongwith the primary
photons x. Consequently, we predict that the accuracy is
improved by increasing the number of scatter detectors.

4.2.3 General Case k ≥ 2

Here, we present the general case k ≥ 2. Let n ∈ N, k ∈
N, ky ∈ Zkn, x ∈ Zn,

Sk =




0 ≤ y1 ≤ n, 0 ≤ y2 ≤ n − y1,
0 ≤ y3 ≤ n − y1 − y2, · · · ,

( ky, x) ∈ Zk+1
n 0 ≤ yk ≤ n −

k−1∑̀
=1
y`,

0 ≤ x ≤ n −
k∑̀
=1
y`




,

and Sc
k
= Zk+1

n \Sk .

Lemma 1. The probability function fk ( ky, x | n, pk (µ))
(k ≥ 2) of the k-chained T-junction model is given by
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fk ( ky, x | n, pk (µ))

=




n!

x!
(
n−

k−1∑
i=1

yi−x

)
!
k−1∏
i=1

yi !

· (pk (µ))
x+(k−1)n−

k−1∑
i=1

(k−i)yi
, ( ky, x) ∈ Sk

· (1 − pk (µ))n−x

0, ( ky, x) ∈ Sc
k

(31)

The proof of Lemma 1 is given in Appendix A.
UsingLemma1, we derive the variance of the k-chained

T-junction model in the following lemma.

Lemma 2. The variance V(k) (k ≥ 1) of the estimated
parameter µ is given by

V(k) =
k2 (

1 − exp (−µL/k)
)2

nN L2 (
1 − exp (−µL)

)
exp (−µL/k)

. (32)

The proof of Lemma 2 is given in Appendix B.

4.3 Properties of V(k)

Here, we present some properties of V(k).

4.3.1 Monotonic Decreasing

Theorem . For all k ≥ 1, the following inequality holds:

V(k) > V(k + 1). (33)

To prove this theorem, we need Lemma 3.

Lemma 3. For all t (t ∈ R, 1 ≤ t) and u (u ∈ R, 0 < u), the
following function is always positive:

g(t) = u + u exp
(u

t

)
+ 2t − 2t exp

(u
t

)
. (34)

The proof of Lemma 3 is given in Appendix C.
Proof of Theorem

Proof. Let Vreal(t) be a function of the real variable t (t ∈
R, 1 ≤ t). This is found by replacing k with t in the expres-
sion for V(k) given in Lemma 2, i.e.,

Vreal(t) =
t2 (

1 − exp (−µL/t)
)2

nN L2 (
1 − exp (−µL)

)
exp (−µL/t)

. (35)

Then, the first derivative of the function Vreal(t) with
respect to t is given by

d
dt

Vreal(t) = −
1 − exp (−µL/t)

nN L2 (
1 − exp (−µL)

)
·

[
µL + µL exp

(
µ

L
t

)
+ 2t − 2t exp

(
µ

L
t

)]
. (36)

The fraction on the right side of Eq. (36) is obviously
positive. Furthermore, the expression inside the square
brackets is also positive because it is exactly the function
in Lemma 3, with u replaced by µL. Consequently, we have

d
dt

Vreal(t) < 0. (37)

Thus, the function Vreal(t) is a strictly decreasing func-
tion. Because k is in the set {t ∈ R | 1 ≤ t}, we arrive at our
goal:

V(k) > V(k + 1). (38)

�

Our theorem states that the accuracy of the estimated
attenuation coefficient is improved by increasing the number
of scatter detectors.

4.3.2 Reduction of the Number of Incident Photons

BecauseV(k) decreases monotonically with respect to k and
is positive, it converges to a limit. By putting u = µL/k, the
limit of V(k) as k approaches infinity is given as follows:

V∞ = lim
k→∞

V(k)

= lim
u→0

µ2L2
( exp (u)−1

u

)2

nN L2 (
1 − exp (−µL)

)
exp (u)

=
µ2

nN
(
1 − exp (−µL)

) . (39)

In this derivation, we used the following formula for the real
number η:

lim
η→+0

exp(η) − 1
η

= 1. (40)

Achieving a variance less than the limit V∞ with only
the primary detector requires that we use a greater number
of incident photons. That is, if we use a sufficient number
of scatter detectors, the number of incident photons can be
reduced to get the same variance as in the primary method.
Let n′ be the number of incident photons in the primary
method for which the variance is that given by Eq. (39).

From Vp = V∞,

1 − exp (−µL)
n′N L2 exp (−µL)

=
µ2

nN
(
1 − exp (−µL)

) . (41)

We then have

n
n′
=

µ2L2 exp (−µL)
(1 − exp (−µL))2 . (42)

To evaluate Eq. (42), we define a function r (u) by sub-
tracting the numerator from the denominator and replacing
µL with u (0 < u) as follows:

r (u) = (1 − exp (−u))2 − u2 exp (−u). (43)

The derivative of r (u) is greater than 0:

d
du

r (u) =
(
(u − 1)2 exp (u) + exp (u) − 2

)
exp (−2u). (44)
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This is because the expression multiplying exp (−2u)
satisfies
d

du

(
(u − 1)2 exp (u) + exp (u) − 2

)
= u2 exp (u) > 0 (45)

and

lim
u→+0

(
(u − 1)2 exp (u) + exp (u) − 2

)
= 0. (46)

Thus, r (u) is strictly increasing. Furthermore, because
we have

lim
u→+0

r (u) = 0, (47)

r (u) is always positive. Consequently, the value of
Eq. (42) is less than 1. Thismeans that the number of incident
photons can be reduced. In Sect. 4.4, we show a numerical
example of this reduction ratio. This property can be used
as a principle for dose reduction.

In addition, V∞ is thought to be related to the amount
of information that can be obtained with a finite number of
incident photons. Further investigation of this is required.

4.4 Numerical Example of the TheoremBased on theMax-
imum Likelihood Method

In the previous sections a theory was constructed. In order
to make the theory more understandable, here, we explain
with numerical examples.

Because a strict maximum likelihood estimator has
asymptotic efficiency [30], we can verify statistical proper-
ties such as the variance by using numerical estimates with a
large number of samples. Exact derivation of the maximum
likelihood estimator of the attenuation coefficient of a homo-
geneous thin cylinder is difficult, but that of the k-chained
T-junction model is derived as follows.

For Eq. (31), when the j th ( j ∈ ZN ) set of measured
values (x ( j), ky ( j))T is given from N independent trials, the
log-likelihood function Lh becomes

Lh(µ|k, n)= log


N∏
j=1

fk ( ky ( j), x ( j) | n, pk (µ))

. (48)

In the case k = 1, according to Eq. (14), the log-
likelihood function of Eq. (48) is given by

Lh(µ|1, n) =
N∑
j=1

log
[

n!
x ( j)! (n − x ( j))!

]
− µL

N∑
j=1

x ( j)

+

N∑
j=1

(n − x ( j)) log
(
1 − exp (−µL)

)
. (49)

When k ≥ 2, Eq. (26) and Lemma 1 indicate that this
becomes

Lh(µ|k, n) =
N∑
j=1

log



n!

x ( j)!
(
n −

k−1∑
i=1

y
( j)
i − x ( j)

)
!
k−1∏
i=1

y
( j)
i !



− µ
L
k

N∑
j=1

*
,

x ( j) + (k − 1)n −
k−1∑
i=1

(k − i) y ( j)
i

+
-

+

N∑
j=1

(n − x ( j)) log
[
1 − exp

(
−µ

L
k

)]
. (50)

When µ̂k is set as µ such that the log-likelihood is
maximized, then for k = 1 we can solve

∂

∂µ
Lh(µ|1, n)

�����µ=µ̂1

= −L
N∑
j=1

x ( j) +
L exp

(
−µ̂L

)
1 − exp

(
−µ̂L

) N∑
j=1

(n − x ( j)) = 0.

We thus obtain

µ̂1 = −
1
L

log


1
nN

N∑
j=1

x ( j)

. (51)

For k ≥ 2, from

∂

∂µ
Lh(µ|k, n)

�����µ=µ̂k
=

L
k
·

exp
(
−µ̂L/k

)
1 − exp

(
−µ̂L/k

) N∑
j=1

(n − x ( j))

−
L
k

N∑
j=1

*
,

x ( j) + (k − 1)n −
k−1∑
i=1

(k − i) y ( j)
i

+
-
= 0,

we have

µ̂k =
k
L

log



knN−
k−1∑
i=1

(
(k − i)

N∑
j=1

y
( j)
i

)
(k−1)nN−

k−1∑
i=1

(
(k−i)

N∑
j=1
y

( j)
i

)
+

N∑
j=1

x ( j)



.

(52)

Thus, we derive the maximum likelihood estimator of
µ for the k-chained T-junction model. However, it is difficult
to analytically derive the variance. Therefore, we can obtain
Mmodel estimated attenuation coefficients with random num-
bers by using Eq. (52). The variance V̂(k) is calculated as

V̂(k) =
1

Mmodel

Mmodel∑
i=1

(
µ̂(i)
k
− µ̂k

)2
, (53)

where µ̂k is the mean given by

µ̂k =
1

Mmodel

Mmodel∑
i=1

µ̂(i)
k
, (54)

and µ̂(i)
k

denotes the ith estimated value.
Here, we show a numerical example. We used the

specific values n = 105, N = 10, Mmodel = 106, µ =
0.17279637, and L = 20 cm. Figure 9 shows the theo-
retical variance given by Eq. (32). The bar at the left end of
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Fig. 9 Theoretically derived variance V(k).

Fig. 10 Variance V̂(k) estimated numerically with the maximum likeli-
hood method.

Fig. 11 Dose reduction ratio.

the diagram indicates the variance for the primary method.
Figure 10 shows the numerically estimated variance V̂(k)
given by Eq. (53). Because both of these quantities exhibit
remarkable agreement, the theoretical analysis (Lemma 2,
Lemma 3, and the Theorem) in the previous section was
verified from numerical aspects.

We also calculated the dose-reduction ratio given by
Eq. (42) for this specific condition. Figure 11 shows this
ratio with respect to the attenuation coefficient at a length
of L = 20 cm. According to this example, if the material
is water (µ = 0.17279637) or bone (µ = 0.37802092), the

ratio is 0.40187576 or 0.02979175, respectively. In an ideal
environment, a significant dose reduction can be expected.

5. Conclusions and Discussion

By means of a Monte Carlo simulation, we conducted a
numerical experiment on simplified CT geometry with a
simulated projection-based method and found that the ac-
curacy improves when several dedicated scatter detectors
are used. To explain this result, we presented a theoretical
analysis with further simplification and idealization. Our
results, especially the theorem in the theoretical analysis,
should provide a strong motivation for verifying the effects
of using scattered X-rays in actual CT geometry, as shown
in Fig. 1(b).

The decrease in variance means a decrease in the ambi-
guity of the information about the object. This implies that
scattered X-rays contain information independent from that
provided by the primary X-rays.

We also clarified the existence of a limit in the accu-
racy achieved by using both primary and scattered X-rays.
Because this limit exceeds the accuracy that can be achieved
with primary X-rays only, the degree of approximation with
this limit may provide a new performance criterion for future
medical X-ray diagnostic devices.

Our theoretical model (k-chained T-junction model)
represents a situation in which many detectors are avail-
able to extract information from a small portion of interest
of an object. Thus, our results provide a basis for using a
sufficient number of detectors and calculation resources to
reduce the patient dose.

In futurework, to put our principle into practice, various
factors such as multiple scattering, photoelectric absorption,
and energy characteristics have to be considered. Further-
more, other principles for utilizing scattered X-rays need to
be investigated.
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Appendix A: Proof of Lemma 1

Proof. We can prove the statement by mathematical induc-
tion.

Basis: Show that the statement holds for k = 2. From
4.2.2, in the set S2, f2(2y, x | n, p2(µ)) is given by Eq. (26).

Inductive step: We assume that Eq. (31) holds when
k = m, i.e.,

fm(my, x | n, pm(µ))

=
n!

x!
(
n −

m−1∑
i=1

yi − x
)
!
m−1∏
i=1

yi!

· (pm(µ))
x+(m−1)n−

m−1∑
i=1

(m−i)yi
(1 − pm(µ))n−x . (A· 1)

The probability function fm+1(m+1y, x | n, pm+1(µ)) in
the set Sm+1 of the model shown in Fig. A· 1 is given by

fm+1(m+1y, x | n, pm+1(µ))
= fm(my, ξ | n, pm+1(µ)) · f1(ym+1, x | ξ, pm+1(µ)).

(A· 2)

By using the inductive hypothesis and Eq. (12), we get

fm+1(m+1y, x | n, pm+1(µ))

=
n!

x! (ξ − x)!
(
n −

m−1∑
i=1

yi − ξ

)
!
m−1∏
i=1

yi!

· (pm+1(µ))
ξ+x+(m−1)n−

m−1∑
i=1

(m−i)yi
(1−pm+1(µ))n−x . (A· 3)

Because ξ is given by

ξ = n −
m∑
i=1

yi, (A· 4)

Equation (A· 3) becomes

Fig. A· 1 The (m + 1)-chained T-junction model.
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fm+1(m+1y, x | n, pm+1(µ))

=
n!

x!
(
n −

m∑
i=1

yi − x
)
!

·
1(

n −
m−1∑
i=1

yi −

(
n −

m∑
i=1

yi

))
!
m−1∏
i=1

yi!

· (pm+1(µ))
n−

m∑
i=1

yi+x+(m−1)n−
m−1∑
i=1

(m−i)yi

· (1 − pm+1(µ))n−x

=
n!

x!
(
n −

m∑
i=1

yi − x
)
!

m∏
i=1

yi!

· (pm+1(µ))
x+mn−

m∑
i=1

(m+1−i)yi
(1 − pm+1(µ))n−x . (A· 5)

Thus, Eq. (31) holds for k = m + 1, and Eq. (31) holds
for all natural numbers k ≥ 2. �

Appendix B: Proof of Lemma 2

Proof. The expected value of the function φ( ky, x) (k ≥ 2)
is given by

E
[
φ( ky, x)

]
=

∑
( ky,x)∈Sk

φ( ky, x) fk ( ky, x | n, pk (µ)). (A· 6)

We can rewrite Eq. (A· 6) in the same manner as for the
case k = 1:

E
[
φ( ky, x)

]

=

n∑
y1=0

n−y1∑
y2=0
· · ·

n−
k−1∑
i=1

y1∑
x=0

φ( ky, x) fk ( ky, x | n, pk (µ)). (A· 7)

Here, in the set Sk , the second derivative of the function
log ( fk ( ky, x | n, pk (µ))) is given by

∂2

∂µ2 log ( fk ( ky, x | n, pk (µ)))

=
∂2

∂µ2



log
*....
,

n!

x!
(
n −

k−1∑
i=1

yi − x
)
!
k−1∏
i=1

yi!

+////
-

+ *
,

x + (k − 1)n −
k−1∑
i=1

(k − i) yi+
-

log (pk (µ))

+ (n − x) log (1 − pk (µ))
]

=
L
k

(n − x) ·
1(

1 − exp (−µL/k)
)2

·

[
−

L
k

exp (−µL/k)
(
1 − exp (−µL/k)

)

−
L
k

exp (−2µL/k)
]

= −
L2

k2 ·
exp (−µL/k)(

1 − exp (−µL/k)
)2 (n − x). (A· 8)

By replacing φ( ky, x) in Eq. (A· 6) with ∂2

∂µ2 log
( fk ( ky, x | n, pk (µ))) and using Lemma 1, the expected
value of the function φ( ky, x) is given by

E
[
∂2

∂µ2 log ( fk ( ky, x | n, pk (µ)))
]

= −
L2

k2 ·
pk (µ)

(1 − pk (µ))2 E [n − x]

= −
L2pk (µ)

k2 (1 − pk (µ))2 (n − E [x]) . (A· 9)

The expected value is given as follows:
E [x]

=

n∑
y1=0

n−y1∑
y2=0
· · ·

n−
k−1∑
i=1

yi∑
x=0

x · fk ( ky, x | n, pk (µ))

=

n−1∑
y1=0

n!
y1! (n − y1)!

(pk (µ))n−y1 (1 − pk (µ))y1

n−1−y1∑
y2=0

(n − y1)!
y2! (n − y1 − y2)!

(pk (µ))n−y1−y2 (1 − pk (µ))y2

· · ·

n−
k−1∑
i=1

yi∑
x=1

(
n −

k−1∑
i=1

yi

)
!

(x − 1)!
(
n −

k−1∑
i=1

yi − x
)
!

· (pk (µ))x (1 − pk (µ))
n−

k−1∑
i=1

yi−x
. (A· 10)

Here, by putting ξ = x − 1,
(
0 ≤ ξ ≤ n − 1 −

k−1∑
i=1

yi

)
,

we get
E [x]

=

n−1∑
y1=0

n!
y1! (n − y1)!

(pk (µ))n−y1 (1 − pk (µ))y1

n−1−y1∑
y2=0

(n − y1)!
y2! (n − y1 − y2)!

(pk (µ))n−y1−y2 (1 − pk (µ))y2

· · ·

n−1−
k−1∑
i=1

yi∑
ξ=0

(
n −

k−1∑
i=1

yi

)
!

ξ!
(
n −

k−1∑
i=1

yi − (ξ + 1)
)
!

· (pk (µ))ξ+1(1 − pk (µ))
n−

k−1∑
i=1

yi−(ξ+1)

= n(pk (µ))k


n−1∑
y1=0

(n − 1)!
y1! (n − 1 − y1)!

(pk (µ))n−1−y1
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· (1 − pk (µ))y1

n−1−y1∑
y2=0

(n − 1 − y1)!
y2! (n − 1 − y1 − y2)!

· (pk (µ))n−1−y1−y2 (1 − pk (µ))y2

· · ·

n−1−
k−1∑
i=1

yi∑
ξ=0

(
n − 1 −

k−1∑
i=1

yi

)
!

ξ!
(
n − 1 −

k−1∑
i=1

yi − ξ

)
!

· (pk (µ))ξ (1 − pk (µ))
n−1−

k−1∑
i=1

yi−ξ


= n(pk (µ))k = n exp (−µL). (A· 11)

Therefore, the expected value of the function φ( ky, x)
is given by

E
[
φ( ky, x)

]
= −

nL2 (
1 − exp (−µL)

)
exp (−µL/k)

k2 (
1 − exp (−µL/k)

)2 .

(A· 12)

Consequently, the variance V(k) of the estimated pa-
rameter µ is given by Eq. (32).

When we replaceV(k) in Eq. (32) with k = 1, the result
is Eq. (18). Therefore, for all k ≥ 1, the variance is given by
Eq. (32). �

Appendix C: Proof of Lemma 3

Proof. The first derivative of the function g(t) (1 ≤ t) is
strictly increasing:

d
dt
g(t) = 2 −

2t2 − 2ut + u2

t2 exp
(u

t

)
. (A· 13)

This is because, for all t ≥ 1 and u > 0,

d2

dt2 g(t) =
u3

t4 exp
(u

t

)
> 0. (A· 14)

Moreover, the limit of Eqs. (34) and (A· 13) as t ap-
proaches infinity is given as follows:

lim
t→∞

g(t) = 0, (A· 15)

lim
t→∞

d
dt
g(t) = 0. (A· 16)

Therefore, Eq. (A· 13) is always negative, i.e., d
dt g(t) <

0. Consequently, because g(t) is a strictly decreasing func-
tion, the function g(t) in Eq. (A· 15) is always positive, i.e.,
g(t) > 0. �
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