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ABSTRACT

The first-order vegetaion isoline equation has been utilized for various purposes

that involve retrieval of biophysical parameters. Although the simplicity of its deriva-

tion results in usability and applicability, the derived formulation suffers from errors

when the brightness of soil layer located under the canopy becomes high. These errors

are caused by truncation of the second- and higher-order interaction terms that rep-

resent photon interactions between the canopy layer and the soil surface. In order to

meet accuracy criteria posed generally to satellite data products, these errors must be

reduced considerably. The objective of this study is to improve the accuracy of veg-

etation isoline equations without sacrificing its simplicity. To achieve the objective,

this study takes three steps: derivation of vegetation isoline equation with higher-

order interaction term, optimization of the derived isoline equation, and extension of

wavelength combination.

The derivation of a new isoline expression was carried out by including the second-

order interaction term in a context of red and near-infrared (NIR) reflectance sub-

space. In this study, the second-order interaction term was, however, considered only

in the NIR wavelength, instead of including in both the red and NIR wavelengths.

This ‘asymmetric’ form of second-order approximation resulted in error reduction

considerably comparing to the first-order vegetation isoline equation. This study also

investigated the mechanism that brings accuracy improvement of the asymmetric-

order vegetation isoline equation. It was found that the asymmetrical inclusion of

the second-order interaction term only in the NIR wavelengths, shifts the approx-

imated reflectance spectra favorably. The resulted approximated spectra becomes

much closer to the true vegetation isoline than the symmetrical case due to an over

correction effect of the reflectance in the NIR wavelength. This study further val-

idated this finding by numerical experiments with a radiative transfer model. As

a result, the error in the asymmetric approximation is reduced to one fifth of the

first-order vegetation isoline equation.

As the second step of this study, the optimization was attempted by introducing

a single factor into the derived asymmetric-order vegetation isoline equation. This

factor was adjusted to minimize root mean square error over the ranges of input

parameters based on the radiative transfer model. The numerical experiments also

xiv



revealed that the errors in the optimized asymmetric-order vegetation isoline equation

were reduced in magnitude to nearly 1/25 of the errors obtained from the first-order

vegetation isoline equation, and to nearly one-fifth of the error obtained from the

non-optimized (original) asymmetric-order vegetation isoline equation. The errors

in the optimized asymmetric-order isoline were compared with the magnitudes of

the signal-to-noise ratio (SNR) of four existing sensors aboard the Earth observation

satellites. These results indicated that the error in the asymmetric isoline could be

reduced to the level of the SNR by adjusting the factor.

Finally, the derivation of the asymmetric-order vegetation isoline was extended to

the combinations of wavelength other than the red and NIR. The extended range of

wavelength investigated in this study was from 400 nm to 1200 nm. The optimum

value of the factor introduced in the previous step was numerically determined in the

same procedure. The results indicated that the value of the optimization factor is not

constant over the range: It varies significantly by the combination of two wavelengths.

Although the accuracy of the asymmetric-order vegetation isoline before optimization

became even lower than the first-order vegetation isoline in certain combinations

of wavelength, the use of the optimization factor results in high accuracy for the

entire wavelength range. It was concluded that the newly derived vegetation isoline

can achieve accuracy hight enough for the use of various applications comparing to

the level of SNR of existing sensors. Further studies will be needed to identify the

accuracy of the retrieved biophysical parameters such as leaf area index by the derived

vegetation isolines.
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CHAPTER I

Introduction

1.1 Global Environmental Issues

In 2013, Intergovernmental Panel on Climate Change (IPCC) reported that the

global warming of the Ecosystem is not a doubtful issue any longer [1]. The report

also indicated that the dominant factor of the global warming is the influence of

the human activity, which would consequently raise the global average temperature

to 0.3◦C∼ 4.8◦C by the end of this century. If the global warming continues at

the current rate, the climate or weather reaches to the level such that the human

society suffers from its influence through the temperature rising, the ocean surface

rising, and the acidification of ocean water. Since the accumulated total emissions of

the greenhouse gas for the cause of global warming is proportional to the rising of

global average temperature, the future temperature level is heavily depended on the

accumulated total amount of greenhouse gas emission [1–4]. In order to act and react

to these global events, the level of the greenhouse gas emission should be monitored

precisely where the satellite remote sensing plays a major roll [5].

The Earth observation organization was established to address important issues

about Earth observation, namely, global environment change by human activity, their

influences on the climate change, and improvement of prediction accuracy of the

climate change. For example, greenhouse gas has been observed continuously to

understand the relation between the influence of greenhouse gas and global warming.

For those purposes, the amount of carbon absorption and exhalation from land surface

needs to be accurately estimated in global scale, where the satellite remote sensing

plays an important role. Among many observation targets, the carbon absorption,

exhalation, and accumulation by vegetation and soil have been considered as hight

priority target. These must be observed continuously for better understanding and

ultimately for better management of its functional role in the global working [6].
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1.2 Trend of Earth Observation Satellites

The Earth observation by satellite remote sensing began in early 1970’s. It has

been mainly carried out by large size and hence heavy satellites. The remote sensing

has been accelerated dramatically since 1980’s. Figure1.1 summarizes the major

Earth observation satellites used for Earth observation and their operation terms.

Considering the weights of Earth observation satellites, the Landsat series lunched in

1973 was approximately one ton. It increases to nearly three times, 2.8 tons, in 2013

for the latest predecessor Landsat-8. This trend has continued until the Terra and

Aqua satellites which exceeded 5 tons. Along with the size and weight inflation, the

development and launch cost also went up to nearly 10 billions yen for one unit of

satellite (designated operation period is five to ten years). Consequently, the Earth

observation satellites have been developed, lunched and operated by the national

initiative, often influenced heavily by political decisions and budget limitation.

Figure 1.1: The weight and operate term of typical Earth observation satellite

Since late 1990’s this trend in the satellite remote sensing has been changed grad-

ually. The size of satellite trends to be smaller with the technology advancement

mainly on the hardware. The weight of small satellite is around 100 kg ∼ 500 kg,

and the development cost is reduced to around a few billions of yen. Remarkably,

the satellites of private enterprise becomes extremely smaller in the last 5 years.

Moreover, miniaturization of satellite size has progressed drastically. Those satellites,

called nano/micro satellites, have been paid much attention from various industries.

The weight of those satellite reaches to 100 kg and under. For instance, the weight of

the satellite, ASNARO, which is lunched in 2014, is 450 kg and its size is 1 m × 1m ×

2



3 m. The weight of some satellites even reached to less than 1 kg. The development

cost can be reduced to around a hundred million yen, approximately 1 % of the large

sized satellite.

The down sizing trend of Earth observation satellite leads to further cost reduction

mainly for launch and operation. As a result, the use of multiple satellites, known

as satellite constellation, has been a realistic choice in the last ten years. To form a

sensor system by the constellation, multiple satellites should be launched into differ-

ence orbits at the once. By a constellation system, both the spatial resolution and

observation frequency can be enhanced simultaneously: These two are no longer in

trade-off. One such example is a constellation system developed by a private sec-

tor, Planet Labs, in the united states. The company lunched more than 60 units

of so-called ‘nano satellite’ in 2016 to facilitate global sensor network in the space.

Later, a Japanese company AXELSPACE has also announced their plan with more

than 50 nano satellites to be launched in 2020. Developing countries have also been

planning for their own satellite constellation, including China [7–12], India [13–15],

and Thailand [16].

Observation frequency will be increased with those satellite constellations. Ta-

ble1.1 summarizes this trends. The observation frequency by the well-established

Landsat series is once in a 16-day revisit cycle. In this case, if land surface could not

be observed once because of cloudy weather, it may not be able to observe more than a

month. On contrary, since the observation frequency has been improved by the satel-

lite constellations, more frequent observation is possible. Even if one satellite misses

the observation chance because of the cloud, we will have an observation chance in

the next day by another satellite of the same constellation system. This evolutionary

technique prompts advancement in software aspect. Especially, calibration technique

and parameter retrieval algorithm should be changed into more suitable form in the

context of constellation.[17].

1.3 Earth Observation by Satellite Remote Sensing

An Earth observation satellite often carries several sensors, and the wavelength

ranges observed by those instruments varies from short to long wavelengths that

depends specifically on the designated targets for each sensor. For example, the

satellite, Greenhouse gases Observing Satellite (GOSAT), observe reflected radiation

in the rage of the visible to thermal wavelength to measure the distribution of green-

house gases. Global Change Observation Mission Satellite (GCOM-C) as one of the

Japanese satellite was designed to observe atmosphere, ocean or land surface [18].

3



Table 1.1: Revisit Cycle of Earth Observation Satellite
satellite period [minutes] revisit cycle [days]

Landsat-1,-2,-3 101 18
Landsat-4,-5 98.9 16
Landsat-7,-8 99 16

Terra 98.8 16
Aqua 98.8 16

Suomi-NPP 101 16
ADEOS 100.8 41
ALOS1 98.7 46
GOSAT 98.18 3

In the united sates, NOAA, Terra, Aqua, and Landsat series are the most popular

satellites among many. By conducting those satellite missions, the long term Earth

observation data have been acquired continuously for nearly five decades. The con-

tribution of those missions have been and will be indispensable to establish long term

data record for the global climate change [19].

1.4 Biophysical Parameter Retrieval Algorithms

Amount of fixed carbon to the ground can be estimated through the estimation

of vegetation amount. In the land discipline of satellite remote sensing, vegetation

status has been monitored by spectral vegetation index (VI). The VI has been used

since early era of Earth observation, and has been a standard data product in various

satellite missions [20]. Most of the VIs were developed based on reflectance observa-

tion in the red and NIR wavelength bands. In fact, the most popular VI, normalized

difference vegetation index (NDVI) [21] , uses the red and NIR bands. Since its

introduction in 1970’s, it has been repeatedly used to estimate vegetation distribu-

tion, structure, composition, diversity, and productivity [20, 22]. NDVI is defined as

reflectance ratio by

NDV I =
ρN − ρR
ρN + ρR

, (1.1)

where ρ represents reflectance variable, and the subscripts R and N indicate red and

NIR band, respectively.

Although NDVI has been successfully used for vegetation monitoring for more

than four decades, it is also known to be influenced by various external factors,

such as viewing and illumination conditions, aerosol amount, soil brightness, spectral
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band-pass filters, and so on. Among those, the most significant disturbance is the

soil brightness which is in a numerical model often assumed to be located underneath

vegetation canopy. It is well known that NDVI varies significantly as the soil bright-

ness changes. Since the introduction of NDVI, numerous VIs have been proposed

to minimize the influences of soil brightness on the VI value. One such example is

soil adjusted vegetation index (SAVI) proposed by Huete in 1988 and its variants

[23–25]. Atmospherically resistant vegetation index [26] was also proposed to reduce

atmospheric influence. In this way, vegetation indices have been improved by a lot

of effort, however, it is usually for vegetation indices to being used by limiting the

physical principle. Some researchers reported that VIs are more suitable for regional

and local targets which are composed of limited variations of target classes than for

global monitoring of land surface [19, 27].

In recent years, due mainly to significant reduction of computational cost, direct

inversion of numerical radiative transfer models has been used to retrieve biophysical

parameters from remotely sensed reflectance spectra. The direct inversion technique

are more flexible than the VIs in terms of model parameters and has advantages in

theoretical justification [28]. Photon transport process is a complex mechanism which

requires numerical solution to the linear transport equation. The direct inversion al-

gorithm considers a whole parameter sets in the model to determine the most suitable

combination. The retrieved biophysical parameter is more accurate than an empiri-

cal technique. On contrary, a VI does not usually require a whole parameter set to

determine its coefficients [29]. Hence it tends to be simple and easy to apply to actual

data processing, while retrieval accuracy is sacrificed in some extent. In general, the

simplicity and accuracy are trade-off: Retrieval of biophysical parameter (by VI and

direct inversion) is also the case [30]. Fulfilling both simplicity and accuracy is still a

challenging theme in this field of study.

1.5 Vegetation Isoline

‘Vegetation isoline’ describes a relationship between two reflectances of different

wavelength observed under a constant vegetation. Figure1.2 represents the relation-

ship of vegetation reflectance spectra between red band and NIR band. This line is

composed of reflectance spectra obtained by fixing the vegetation amount at a certain

value and varying the soil brightness. Thus, each isoline represents the reflectance

spectra of the same vegetation amount. Because of this, the line is called vegeta-

tion isoline [31, 32]. Because one vegetation isoline represents a constant vegetation

amount, the information about vegetation isoline can be used to retrieve biophysical
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Figure 1.2: Plots of vegetation isoline for five LAI values.

parameters as an inversion technique based on a physical model. Figure1.3 shows

NDVI plots as a function of LAI by assuming three different soil brightness. As can

be seen in Fig.1.3, the NDVI values show variations along with the differences in soil

brightness, which is a major reason of accuracy loss.

This ‘soil influence’ has been investigated by many researchers. One remarkable

progress has been achieved by Huete et al. in late 1980’s [31–33]. They conducted

field experiments to physically alter the soil brightness in cotton field. They nicely

explained how the vegetation isolines are formed by the variations of soil spectra.

Since then, several improvement have been made to the NDVI formulation to take

into account the soil influence [23–25, 34, 35]. In the recent years, Zhangyan et al.

[36] clearly stated that in order to improve accuracy in VIs, one should make the

VI’s isolines similar to the vegetation biophysical isolines [36]. In 2000, Yoshioka

et al. [37] introduced a formal derivation of the vegetation isoline equation in red-

NIR reflectance subspace. Since then, both analytical and numerical studies on the

vegetation isolines have been conducted by several researchers. This study is one such

attempt to contribute its improvement.

Accuracy loss in VI is also brought by difference in spectral response function

when two sensors are interchangeably used to form a single observation dataset. In
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Figure 1.3: Plot of NDVI as a function of LAI for three different soil brightness (dark,
intermediate, bright).

general, this case cannot be avoided because designated lifetime of Earth observation

satellite is about five to seven years. If one wants to analyze satellite data for the term

longer than a satellite lifetime, then one needs to combine data sets of at least two

sensors. The accuracy loss caused by the difference in spectral responses of the two

sensors is also unavoidable in such a case. This issue has been investigated by many

researchers. As a result, translation methods from one sensor’s output to another

have been proposed [38–40]. In recent years, several researchers have investigated

physically-based translation algorithm mainly based on reflectance relationship (iso-

line equation) to resolve some of the issues in this theme [41, 42]. In 2018, Fan et al.

introduced the translation technique with vegetation isoline equations as one of the

physically-based inter-calibration methods [43].

The concept of vegetation isoline has been used for estimation of biophysical pa-

rameters such as leaf area index, fraction of green cover, chlorophyll contents [30, 44].

These studies have been conducted based on the first-order approximated vegetation

isoline equations. The resulted estimation is thus suffers from the error caused by

the approximation. In order to reduce the error in the vegetation isoline, the form of
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the derived expression is expected to be rather complex. This complexity is resulted

from the inclusions of higher-order interaction terms during the derivation. As it is

described at the end of Section 1.3, the simplicity of the derived expression and its

accuracy are in a trade-off relationship. This trade-off makes the investigation of

vegetation isoline and its application difficult to proceed. This study is to overcome

this difficulty: The ultimate goal of this study is to achieve accuracy improvement

which is high enough to be used in a actual data processing while maintaining the

simplicity of the derived expression.

1.6 Objectives

The objectives of this study are threefold. The first objective is to derive a new

vegetation isoline equation with higher order interaction terms. The second one is

to improve its accuracy by introducing a single adjustment factor into the derived

formulation. The third is to extend the wavelength range into the entire visible

to near infrared region. In the following Chapter, the derivation of the vegetation

isoline will be explained in detail. Then, in Chapter III, the accuracy improvement

of the derived expression will be explained. Specifically, an adjustment factor will be

introduced. Its error reduction mechanism will also be analyzed based on a radiative

transfer model. The derivation and accuracy improvement in Chapters II and III will

be conducted by assuming a pair of red (655 nm) and NIR (865 nm) wavelength. In

Chapter IV, this restriction will be extended to the wavelength range of 400 nm to

1200 nm. Finally, in Chapter V, this study will be concluded with some remarks on

future efforts.
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CHAPTER II

Vegetation Isoline Equations with First- and

Second- Order Interaction Terms for Modeling a

Canopy-Soil System of Layers in the Red-NIR

Reflectance Space

2.1 Introduction

Biophysical parameter retrieval from remotely sensed reflectance spectra is a fun-

damental goal in the field of land remote sensing. Qin et al. [45] categorized the

available retrieval algorithms into four groups based on the approaches taken: 1) tech-

niques that relied on a spectral vegetation index and its correlation with biophysical

parameters, such as the leaf area index (LAI) [23–25, 35, 46, 47]; 2) algorithms that

used lookup tables [48, 49]; 3) neural networks [50–52]; and 4) direct inversions of

numerical models (e.g., models of radiative transfer (RT)) using optimization meth-

ods [28, 45, 49, 53, 54] . These approaches present advantages and disadvantages

over other approaches in terms of accuracy, computational costs, complexity, and ap-

plicability. The common feature of all categories of approach is that a better model

increases the accuracy of the retrieved parameters. For this reason, significant efforts

have been applied toward improving the accuracy of physical and numerical models.

The concept of vegetation isolines [23, 34, 55–58] forms the basis of the spectral

vegetation index (VI) [23, 34, 47, 58], which has been widely used as a proximity

measure (model) of surface biophysical parameters [59]. The isoline concept has been

used as an analytical tool for investigating the influence of the soil on the retrieved

parameters [36, 60–65]. From this standpoint, vegetation isoline equations provide a

model for the relationship between reflectances at different wavelengths. Several re-

ports have attempted to use isolines in the analysis of the VI [62, 65] and in parameter

retrieval [30, 66]. Recently, these relationships were applied to intercalibration studies
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of the VI values obtained from different sensors [41, 42, 67]. Thus, the accuracy of the

vegetation isoline equation must be improved in order to improve parameter retrieval

algorithms and better understand the factors that affect intercalibration studies.

Yoshioka et al. [37] found that the derived isoline by the isoline equations loses

accuracy in intermediate ranges of the LAI. Loss of accuracy in the isoline equation

arises from truncations of the terms that correspond to multiple interactions among

the photons reflected from the canopy layer (at the bottom surface) and the soil sur-

face. These terms are referred to as higher-order interaction terms [37] in this study.

The isoline equations derived by Yoshioka et al. [37, 62, 68] retain the interaction

terms up to the first-order terms. The truncation, however, simplifies the derivation

and yields a final form that is useful as an analytical tool [41, 42, 62, 65, 67]. One

drawback of this truncation, however, is the loss of accuracy, which must be improved

while simultaneously retaining the simplicity of the model. This study seeks to do

just this.

We conducted a series of pilot studies [69–71] to explore possible improvements

to the higher-order terms in the isoline equations. Derivations were developed for use

in several cases. Three model issues have yet to be clarified. First, the relationship

between the previously derived isoline, which includes a first-order interaction term,

and the newly derived isoline, which includes higher-order interactions, is not yet

understood. Second, the mechanism by which the errors were reduced upon inclusion

of the higher-order term has not yet been identified. In some cases, isolines containing

fewer interaction terms to describe one of the two bands showed significantly better

accuracy. This mechanism must be explored systematically. This study examines

these matters from an analytical and numerical perspective. The isoline equation

derived here is even simpler than the equation introduced in the pilot studies; thus,

this equation may be readily applied to new analyses. Finally, numerical procedures

for determining the isoline parameters were not discussed in the pilot studies. These

matters require further study for application purposes.

The objective of this study is to improve the first-order isoline equation by in-

cluding second-order interaction terms while maintaining the model simplicity. This

objective was achieved through a novel approach. Instead of retaining the second-

order interaction terms of both the red and near-infrared (NIR) bands, we retained

the term only for the reflectance of the NIR band. The asymmetric treatment of the

second-order interaction significantly improved the model accuracy without sacrific-

ing the simplicity of the derived expression. This study describes the formal steps

used to derive the improved version of the vegetation isoline equation and validate its

accuracy by conducting numerical experiments based on a coupled leaf and canopy
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radiative transfer model, PROSAIL [72].

The remainder of this discussion presents a review of a previously derived vegeta-

tion isoline equation [37, 62], referred to as a first-order isoline equation in this study.

Two forms of higher-order approximations are derived. The results of numerical ex-

periments using an RT model are then shown to evaluate the degree to which the

accuracy was improved by the introduction of the higher-order approximations. The

mechanism by which the accuracy was improved by the approximations is discussed

in detail. Finally, the findings of this study are summarized.

2.2 Analytical Model and First-Order Vegetation Isoline

2.2.1 Analytical canopy reflectance model

This study begins with an analytical form of the top of the canopy (TOC) re-

flectance model, which has been used extensively in this field of study [73],

ρλ = ωρvλ + ω
T 2
λRsλ

1−RsλRvλ

+ (1− ω)Rsλ, (2.1)

where the variables and notations mainly follow those given in [37, 62], except for the

fraction of vegetation cover represented by ω in this study. The variable ρλ represents

the TOC reflectance at the wavelength λ, ρvλ represents the ’pure’ canopy reflectance,

which can only be obtained by assuming perfect absorbance beneath the canopy layer,

Rsλ and Rvλ represent the bi-hemispherical reflectance of the soil and canopy layers,

respectively. The variable Rvλ is somewhat special among these variables because

it represents the albedo of the bottom surface of the canopy layer. The details of

the model are illustrated in Fig. 2 of the reference [37]. T 2
λ represents the two-way

transmittance of the canopy layer at the indicated wavelength, λ. We next defined

the area-averaged two-way transmittance at a point,

T 2
λ = ωT 2

λ + 1− ω. (2.2)

The word ’area-averaged’ indicates that the bare soil region, (1−ω), provides ’perfect’

two-way transmittance properties, and the averaged transmittance of the partially

vegetated area may be modeled using a weighted average of T 2
v and 1.0, with weighted

values of ω and (1 − ω). In the following section, we briefly explain the vegetation

isoline equation introduced previously [37, 62].
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2.2.2 Vegetation isoline equation with a first-order interaction term in

the red-NIR reflectance subspace

The isoline equation introduced in this subsection is referred to as the first-order

isoline because only a single interaction term with the soil surface is included.

The model was derived by explicitly including the first-order interaction term as

the second term of the right-hand-side (RHS) of Eq. (2.3),

ρλ = ωρvλ + ωT 2
λRsλ +

ωT 2
λR

2
sλRvλ

1−RsλRvλ

+ (1− ω)Rsλ, (2.3)

where the second term of the RHS in Eq. (2.3) indicates the first-order interaction

term. The second and higher interaction terms, represented by the third term of the

RHS, is further defined as a truncated-order term,

O(R2
sλ) =

T 2
λR

2
sλRvλ

1−RsλRvλ

. (2.4)

Equation (2.3) can be simplified using Eq. (2.2),

ρλ = ωρvλ + T 2
λRsλ + ωO(R2

sλ). (2.5)

Two equations were used to describe the red (denoted by the subscript R) and

near-infrared wavelengths (N),

ρR = ωρvR + T 2
RRsR + ωO(R2

sR), (2.6)

ρN = ωρvN + T 2
NRsN + ωO(R2

sN). (2.7)

The soil line assumption of [74] was applied,

RsN = aRsR + b, (2.8)

where a and b represent the slope and offset of the soil line, respectively. Equations

(2.6), (2.7), and (2.8) were used to eliminate the soil reflectances RsR and RsN to

obtain the first-order approximated vegetation isoline equation,

ρN = aγ1ρR +D1 + ϵ1, (2.9)
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where γ, D, and ϵ1 are defined by

γ1 = T 2
N/T

2
R, (2.10)

D1 = bT 2
N + ω (ρvN − aγ1ρvR) , (2.11)

ϵ1 = ω
[
O(R2

sN)− aγ1O(R2
sR)

]
. (2.12)

Finally, we obtained an approximated form of the vegetation isoline equation by

truncating the higher-order interaction term,

ρN ≈ aγ1ρR +D1. (2.13)

The first-order isoline model suffers from truncation errors. For example, Yoshioka

et al. [37] indicated that the truncation error increases at higher soil reflectance values,

and the relative error can reach 5%. Their findings suggest that the errors in the

retrieved biophysical parameters calculated based on the isoline formula, can reach

the same magnitude. The truncation errors in the isoline formula should, therefore,

be minimized to obtain more accurate parameter retrievals using the isolines.

The truncation error pattern obtained from the first-order isoline model was nu-

merically characterized using a radiative transfer model PROSAIL [72]. Figure 2.1

shows the first-order isoline and reflectance spectra simulated using the model in

the red and NIR reflectance subspaces. The empty circles denote the simulated re-

flectance, which was considered to be a ’true’ spectrum. The solid lines indicate the

first-order isoline at various LAI values of the pure canopy component ranging from

0 to 4 at intervals of 0.5. The left and right figures present the results obtained from

different fraction of vegetation cover (FVC, ω) values: full coverage (ω = 1) or half

coverage (ω = 0.5), respectively. A detailed description of the simulation conditions

is provided in the latter section. These results confirmed that the error (the discrep-

ancy between the empty circles and the solid lines) in the first-order isoline could be

reproduced numerically using the model presented in this study.

The error trend was characterized by plotting the distance between the isolines

and the true spectra, as shown in Fig. 2.2 at LAI=1.0 (solid line) and LAI=4.0

(dashed line) for both the fully covered and partially covered cases. The error was

plotted as a function of the soil reflectance in the red band. The figure clearly reveals

two characteristics: First, the error increased as the soil became brighter. Second, the

error at LAI=1.0 always exceeded that obtained for LAI=4.0. Because these trends

have been analyzed previously [37, 62], we summarize the conclusions briefly: (1) the

influence of the higher-order interaction terms increased for brighter soils; and (2)
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Figure 2.1: First-order vegetation isolines and simulated reflectance spectra obtained
using PROSAIL. The value of the FVC represented by ω was assumed to
be (a) unity, representing a fully covered case; or (b) 0.5, representing a
partially covered case.

this influence first increased and then decreased as the canopy thickened.

The error could be reduced to some extent by adjusting the higher-order terms.

The next section discusses the derivation steps used to obtain the second-order ap-

proximated reflectance and a new isoline equation referred to as the ’asymmetric order

isoline’ in this study.

2.3 Second-Order Approximation and Asymmetric Order Iso-

line

2.3.1 Parametric form of the second-order approximated reflectance spec-

tra

The second-order interaction term could be explicitly separated from the higher-

order term in Eq. (2.3) using the approach taken to separate the first-order term.

Specifically, the interaction terms were retained up to the second order for both the
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Figure 2.2: Distance between the first-order isoline and the true reflectance spectrum
shown in Fig. 2.1 for (a) ω = 1.0 and (b) ω = 0.5.

red and NIR spectra in Eq. (2.3). The resulting equation then becomes

ρλ = ωρvλ + T 2
λRsλ + ωT 2

λRvλR
2
sλ + ωO(R3

sλ), (2.14)

where

O(R3
sλ) =

T 2
λR

3
sλR

2
vλ

1−RsλRvλ

. (2.15)

We next rewrote Eq. (2.14) to describe the red and NIR bands using the subscripts

R and N to obtain

ρR = ωρvR + T 2
RRsR + ωT 2

RRvRR
2
sR + ωO(R3

sR), (2.16)

ρN = ωρvN + T 2
NRsN + ωT 2

NRvNR
2
sN + ωO(R3

sN). (2.17)

The soil line in Eq. (2.8) was used to obtain the reflectance spectrum to a second-

order approximation, as represented by the following form with RsR as a parasite
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parameter,[
ρR

ρN

]
=

[
T 2
R ωT 2

RRvR

aT 2
N + ω2abT 2

NRvN ωa2T 2
NRvN

][
RsR

R2
sR

]
+ ω

[
ρvR

ρvN + bT 2
N/ω + b2T 2

NRvN

]

+ω

[
O(R3

sR)

O(R3
sN)

]
.

(2.18)

The last term could be neglected to obtain a parametric representation of the approx-

imated second-order spectrum. This form was used only in the numerical experiments

to evaluate the isoline equation, as discussed in the following subsection.

2.3.2 Isoline equation obtained by asymmetrically truncating the higher-

order interactions

The previous subsection discussed the retention of the higher-order interaction

terms up to the second-order terms for both the red and NIR bands. In this subsec-

tion, we include the second-order interaction term only in the description of the NIR

band, and the red band is approximated up to the first-order interaction term.

A system of equations was obtained using Eqs. (2.6), (2.17), and (2.8), in which

the soil reflectances were eliminated. Algebraic manipulations yielded the final results,

ρN = a2ζρ2R + a(γ1 + δ1)ρR +D1 + δ0 + ϵ2, (2.19)

where

ζ = ωT 2
NRvN/(T 2

R)
2, (2.20)

δ0 = ζ
(
bT 2

R − ωaρvR

)2

, (2.21)

δ1 = 2ζ
(
bT 2

R − ωaρvR

)
, (2.22)

ϵ2 = ωO(R3
sN) + a2ω2ζ

[
O(R2

sR)
]2

− aω
[
2aζρR + γ1 + 2ζ

(
bT 2

R − aωρvR

)]
O(R2

sR). (2.23)

Neglecting ϵ2 from Eq. (2.19), we have

ρN ≈ a2ζρ2R + aγ2ρR +D2, (2.24)
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where

γ2 = γ1 + δ1, (2.25)

D2 = D1 + δ0. (2.26)

2.4 Results of the Numerical Simulations

2.4.1 Parameter settings used in the numerical experiments

A series of numerical experiments was conducted using the canopy radiative trans-

fer model PROSAIL [72]. This model consists of the leaf model PROSPECT [75] and

the canopy model SAIL [76]; thus, two types of input parameter were required. Nu-

merical experiments were conducted using the set of input values provided with the

code, except that the three input parameters LAI, leaf angle distribution (LAD), and

soil factor, were set as follows. The soil factor was obtained from the mixture ratio

of the wet and dry soil spectra provided with the code. The parameter ranges of

the three parameters were as follows. LAI was varied from 0.0 to 4.0 at 0.5 intervals

(9 levels), and the soil factor was varied from 0.0 to 1.0 at 0.1 intervals (11 levels).

During the numerical experiments, six LAD models (planophile, erectophile, plagio-

phile, extremophile, spherical, and uniform distributions) were assumed. (The results

section focuses on the case of a spherical LAD, as a representative case, for brevity.)

Finally, the obtained reflectance spectra were linearly mixed with the pure soil re-

flectance spectra using the fraction of green cover (ω) as a weight. The parameter ω

was varied from 0.0 to 1.0 in 0.1 intervals (11 levels). The total number of spectra

used to model each LAD was 1089. In the analysis, we assumed that the reflectances

at 655 nm and 865 nm provided representative values of the red and NIR bands in

this study. This choice of wavelength pair corresponded to the center of the red and

NIR bands obtained from the Landsat 8 operational land imager (OLI) sensor.

The other input parameters provided with the code were fixed as follows. For

the SAIL part of the code, the parameter describing the hot spot (hspot) was set to

0.01. The solar zenith, observation zenith, and relative azimuth angle were set to 30,

10, and 0 degrees, respectively. For the PROSPECT part of the code, chlorophyll-a

and -b, carotenoid, and the leaf mass per area were assumed to be 40, 8, and 0.009

in g/cm2, respectively. The equivalent water thickness was set to 0.01 cm, and the

brown pigment content was assumed to be zero. Finally, the leaf mesophyll structure

(N) was assumed to be 1.5 (the equivalent number of layers).
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2.4.2 Numerical procedure used for the isoline parameter retrieval and

the error estimation

The isoline parameters used in Eqs. (2.9) and (2.19) were computed from T 2
vλ

and ρvλ, which were determined using the algorithm described in the reference [37].

This algorithm required two hypothetical simulations in which the soil was assumed

to be ’spectrally flat’, with a zero reflectance value, or the soil was assumed to have

a medium reflectance value over the entire wavelength range. In addition to T 2
vλ and

ρvλ, the asymmetric order approximated isoline, Eq. (2.19), required a value of RvN

to define ζ. RvN was determined by conducting an additional simulation in which the

soil was assumed to be spectrally flat and even brighter than was assumed in the sim-

ulation used to determine T 2
vλ. The assumption of brighter soil increased the photon

contributions of the higher-order interactions. The parameter RvN was determined

by solving Eq. (2.17) for RvN and using T 2
vN and ρvN , which were computed prior

to RvN . With these variables in hand, the isoline parameters γ1, D1, γ2, D2, ζ, δ0,

and δ1 were obtained. In summary, three hypothetical simulations were conducted

to determine the isoline parameters that corresponded to spectrally flat soil at three

different brightness levels.

The errors in the isolines and the approximated reflectance spectra were estimated

by computing the distance from the true spectra. Note that the error in the isolines

should be equal to the distance between the true reflectance spectrum (which includes

all higher-order interaction terms) and the ’isoline’ represented by Eqs. (2.9) and

(2.19), corresponding to the first-order and asymmetric order isolines, respectively.

Even if a spectrum approximated using a model based on truncated higher-order

terms were far from the true spectrum, the error could be zero provided that the

’isoline’ passed through the point of the true spectrum in the red–NIR reflectance

subspace. This distance was employed as a measure of the error because the error in

the biophysical parameter retrieval obtained using the isoline reached zero numerically

under conditions in which the true spectrum point coincided with the isoline. The

goal of isoline determination is to identify the conditions under which the isoline

coincides with the true spectra.

2.4.3 Comparison of the accuracy across the three approximations

The performances of the two types of isoline, namely, the first-order and second-

order isolines, were compared with the true and second-order reflectance spectra ob-

tained in the red-NIR reflectance subspace. Figure 2.3 represents the isolines as solid

lines. The first- (Eq. (2.9)) and the asymmetric-order (Eq. (2.19)) isolines are plot-
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ted as black and red lines, respectively. The empty circle represents the true spectra

obtained directly from PROSAIL and corresponds to the spectra represented by Eq.

(2.1). The cross-mark was used to indicate the second-order approximated reflectance

spectra, Eq. (2.18). The isolines were compared at two values of the vegetation cover:

(a) ω = 1.0 and (b) ω = 0.5.

These figures reveal that the asymmetric isolines (red lines) provided much better

approximates for the true spectra (empty circles) than the first-order isolines (black

lines) over the entire LAI range. The error in the asymmetric order isoline was smaller

than that obtained from the first-order isoline. Furthre analyses in this subsection

(Table 1) and the next subsection (Fig. 6) indicated that the asymmetric isolines were

even closer to the true spectra than the second-order approximated reflectance spectra

(cross marks) over the full spectral range. This result is, to some extent, surprising

because the error in the second-order approximated spectrum was expected to be

smaller than the error obtained from the asymmetric isoline, in which one of the

bands (the red band in this study) was approximated to the first order instead of to

the second order. This result will be further discussed later in this section.

The errors obtained from the two isolines and the second-order reflectance spectra

were directly compared, and the distance between these isolines and the spectra ob-

tained from the true values (including all higher-order terms) are plotted as a function

of the soil reflectance RsR for the four combinations of LAI and ω (Fig. 2.4). The

errors obtained from the first-order isoline, second-order reflectance, and asymmet-

ric order isoline are denoted using different colors. Figures 2.4(a) and 2.4(b) show

the results obtained for the fully covered case, with LAI=1.0 and 4.0, respectively.

Figures 2.4(c) and 2.4(d) show the results obtained for the half-covered case. These

figures indicated that (1) the error over RsR was high at high values of RsR, and (2)

in most cases, the errors of the asymmetric isoline were the smallest among the three

models over the range of RsR. This result indicates that the accuracy of the asym-

metric isoline dramatically improved over the entire range of RsR. Again, recall that

the asymmetric isoline used a first-order approximated reflectance to model the red

band, whereas a second-order reflectance was used to model the second-order interac-

tion terms in both the red and NIR bands. The error in the second-order reflectance

(blue line) was expected to be smaller than the error obtained from the asymmetric

isoline (red line). These results could be explained in terms of the relationship be-

tween the overcorrection and the truncation error. This mechanism is described in

detail below.

Before discussing these surprising results, we will analyze the error trend by in-

vestigating the error distributions obtained from the simulations conducted using
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Figure 2.3: First-order isoline (black line) defined by Eq. (2.9), and the asymmetric
isoline (red line) defined by Eq. (2.19), with the second-order reflectance
spectra (cross mark) computed using Eq. (2.18) and the true spectra
(empty circle) computed using PROSAIL. The value of the FVC repre-
sented by ω was assumed to be (a) unity, representing a fully covered
case; or (b) 0.5, representing a partially covered case.

combinations of the three input parameters (LAI, fraction of vegetation cover ω, and

soil reflectance RsR) employed in this study. Figure 2.5 shows a histogram of the

errors obtained from the three approximations. The figure reveals that the asymmet-

ric order isoline errors were clustered at lower errors, unlike the errors of the other

two approximations, and very few simulations provided errors of 1.0× 10−3. On the

other hand, the errors of the first- and second-order isoline reflectance simulations

were uniformly distributed at distances exceeding 1.0×10−3. These results confirmed

that the asymmetric order isoline outperformed the other two approximations.

The model performances were further validated by varying the leaf angle distribu-

tion (LAD). The experiments compared the results obtained by assuming six different

LAD models: planophile, erectophile, plagiophile, extremophile, spherical, and uni-

form distributions. The error values were averaged over the entire range of the three

parameters (LAI, ω, and RsR). These results are summarized in Table 2.1, which

lists the standard deviation and the maximum values obtained in all cases. The table

indicates that the average error of the asymmetric order isoline was much smaller (by
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nearly one order of magnitude) than the average error of the first-order isoline for

all LAD cases. The table also reveals that the performance of the asymmetric order

isoline was better than that of the second-order reflectance in terms of the average,

standard deviation, and the maximum value. Table 2.1 supports the above findings

(e.g., that the asymmetric order isoline performed better than the other models),

derived in Figs. 2.4 and 2.5. The next subsection analyzes the detailed mechanisms

underlying this trend.

2.4.4 Error reduction mechanisms using the second-order isoline

The numerical results presented above indicate that the asymmetric order isoline

model was more accurate than the reflectance approximated up to the second-order

interaction terms, despite the fact that the latter included a greater number of terms

in the red band than did the asymmetric order isoline. This trend is not easy to

understand intuitively, but it appeared to result from the tendency of the model to

overcorrect by a degree that was approximately equal to the order of magnitude of

the truncation error in the isoline.

We further examined the model performances by plotting the four reflectance

spectra: (1) the true spectrum computed directly using PROSAIL; (2) the first-order

approximated reflectance; (3) the second-order approximated reflectance; and (4) the

asymmetric order approximated reflectance using two types of vegetation isoline (first-

order isoline and asymmetric order isoline). Figure 2.6 shows a limited region of the

red-NIR reflectance subspace to illustrate the differences between the four predicted

spectra. This part of the subspace corresponds to the results obtained at LAI=2.0

for the case of full canopy coverage.

Figure 2.6 reveals that the closest spectrum to the true spectrum (denoted by

the circle) is the second-order approximated reflectance, denoted by the crosses. The

asymmetric isoline represented by the red line is even closer to the true spectrum,

whereas the asymmetric order approximated reflectance spectrum (triangle) is further

from the true spectrum compared to the second-order approximated spectrum. Recall

that the errors are measured as the distance between the true spectrum (circle) and

the model spectra. Because the distance to the isoline (red line) was smaller than

the distance between the true spectrum and the second-order approximated spectrum

(cross), the error of the asymmetric isoline was surely smaller. Therefore, these results

are consistent with the trend described in the previous subsection.

This trend could be understood as resulting from an overcorrection to the NIR

band in the asymmetric approximation and the truncation error in the isoline. In

the asymmetric case, the inclusion of a second-order term only in the NIR band
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over-corrected the spectrum upward in the direction from the first-order spectrum

(square), as illustrated in Fig. 2.7. The overcorrection of the NIR band shifted the

asymmetric order approximated spectrum (triangle) from the position of the first-

order approximated spectrum (square) parallel to the NIR axis instead of toward

the true reflectance spectrum (circle). Fortunately, this shift direction and distance

compensated for the truncation error. As a result, the isoline of the asymmetric

approximation (red line) ran through the subspace between the true (circle) and

second-order approximated spectra (cross). In summary, the overcorrection of the

NIR band and the truncation error in the NIR band nicely canceled each other out,

thereby shifting the isoline (red) upward into the subspace to decrease the distance

between the true spectrum and the isoline.

2.5 Discussion and Conclusions

The truncation of higher-order interaction terms presents a major limitation to

isoline models based on a first-order approximation, although this truncation can

simplify the final expression. The simplicity of the analytical form is advantageous

for analytical and numerical investigations of parameter retrieval algorithms, such

as the LAI, FVC, as well as of proximity measures, such as the spectral vegetation

index. The accuracy of the vegetation isoline models may be increased by including

the second-order interaction terms in both the red and NIR reflectances; however,

the derived expression was rather complex, thereby reducing the utility of the model

as a tool for analytical and numerical studies. This study took a unique approach:

instead of including the second-order terms in both the red and NIR bands, this study

included the term only in the NIR reflectance.

The final form of the derived asymmetric isoline is rather simple; thus, it can

be easily altered, similar to the previously derived first-order isoline. This model,

however, dramatically reduces the errors obtained in the first-order isoline, and the

accuracy of the asymmetric case is even better than that obtained from the reflectance

spectrum using the second-order term. With both simplicity and accuracy, the derived

expression can contribute to a wide range of applications, from designing optimal

spectral vegetation index sets to developing inversion algorithms in which the derived

expression may be used as a constraint in the optimization algorithm.

This study focused on only the relationship between the red and NIR reflectances.

Although overcorrections in the NIR band nicely compensated for the truncation er-

rors inherent in the isoline equation, this compensation mechanism may not apply to

other combinations of wavelengths. The applicability of this model to other combina-
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tions, e.g., the NIR and shortwave bands, will require more thorough investigations.

The findings of this study are currently limited to the combination of red and NIR

wavelengths.

Overcorrection by intentionally truncating more terms in the red band than in

the NIR band compensated for the truncation errors of the higher-order term in a

derivation of the vegetation isoline. These findings suggest that optimal control over

the overcorrection level could further reduce the errors in the asymmetric isoline. This

possibility is worth exploring in future studies.
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Figure 2.4: Distance between the first-order isoline, second-order reflectance spec-
trum, or the asymmetric isoline and the corresponding true reflectance
spectra, as a measure of the error shown in Fig. 2.3 at four combinations
of LAI and ω: (a) LAI=1.0, ω = 1.0, (b) LAI=4.0, ω = 1.0, (c) LAI=1.0,
ω = 0.5, and (d) LAI=4.0, ω = 0.5.
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Figure 2.5: Histogram of the errors obtained from the first-order isoline, second order
reflectance, and asymmetric order isoline. The total number of simulated
cases was 1089 = (9 discrete values of LAI) × (11 values of FVC, ω) × (11
values of soil reflectance RsR), assuming a spherical leaf angle distribution.
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Table 2.1: Average, standard deviation, and maximum differences between the true
reflectance spectra and the three cases of the isoline/reflectance spectra.
The differences were computed by assuming six types of leaf angle distribu-
tion (LAD): planophile, erectophile, plagiophile, extremophile, spherical,
and uniform distributions.

LAD: Planophile
1st order isoline 2nd order spectrum asymmetric isoline

Mean 1.93 × 10−3 8.53 × 10−4 3.46 × 10−4

STD 2.47 × 10−3 1.33 × 10−3 5.06 × 10−4

MAX 1.30 × 10−2 8.08 × 10−3 2.56 × 10−3

LAD: Erectophile
1st order isoline 2nd order spectrum asymmetric isoline

Mean 2.93 × 10−3 1.92 × 10−3 8.44 × 10−4

STD 3.68 × 10−3 2.84 × 10−3 1.16 × 10−3

MAX 1.85 × 10−2 1.60 × 10−2 5.79 × 10−3

LAD: Plagiophile
1st order isoline 2nd order spectrum asymmetric isoline

Mean 1.57 × 10−3 5.53 × 10−4 2.16 × 10−4

STD 2.06 × 10−3 8.89 × 10−4 3.23 × 10−4

MAX 1.10 × 10−2 5.60 × 10−3 1.62 × 10−3

LAD: Extremophile
1st order isoline 2nd order spectrum asymmetric isoline

Mean 1.74 × 10−3 6.33 × 10−4 2.47 × 10−4

STD 2.26 × 10−3 1.01 × 10−3 3.68 × 10−4

MAX 1.18 × 10−2 6.22 × 10−3 1.84 × 10−3

LAD: Spherical
1st order isoline 2nd order spectrum asymmetric isoline

Mean 1.95 × 10−3 8.79 × 10−4 3.57 × 10−4

STD 2.51 × 10−3 1.37 × 10−3 5.21 × 10−4

MAX 1.32 × 10−2 8.31 × 10−3 2.65 × 10−3

LAD: Uniform
1st order isoline 2nd order spectrum asymmetric isoline

Mean 1.65 × 10−3 5.85 × 10−4 2.28 × 10−4

STD 2.15 × 10−3 9.38 × 10−4 3.41 × 10−4

MAX 1.13 × 10−2 5.86 × 10−3 1.71 × 10−3
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order approximated spectrum (triangle), with the two isolines (first-order,
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full canopy coverage (ω = 1.0) were assumed.

Figure 2.7: Illustration of the error reduction mechanism in the asymmetric order
approximated isoline.
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CHAPTER III

Improved Accuracy in the Asymmetric

Second-Order Vegetation Isoline Equation over the

Red–NIR Reflectance Space

3.1 Introduction

Estimation of biophysical parameters from remotely sensed reflectance requires

calibration [77], inter-comparison of reflectance spectra [78] and derived data prod-

ucts [79]. Parameter retrieval based on those calibration efforts has been a major

goal of land analysis disciplines [19]. The outcomes of such efforts provide crucial

information about local and global areal coverage, that is used in a wide range of ap-

plications [80]. Although numerous investigations have reported the development and

improvement of biophysical parameter retrieval algorithms, many of these algorithms

involve simple algebraic band manipulations known as spectral vegetation indices

(VIs) [45, 81]. A variety of VI models have been investigated for their robustness

against both internal and external influences [23, 24, 26, 35, 47, 82–84].

A key component of VI model development is the relationship between two re-

flectances of different bands obtained under fixed biophysical parameter conditions.

This relationship produces a reflectance spectrum trajectory in a reflectance subspace

attributed to a fixed biophysical parameter value; therefore, this relationship is known

as a vegetation isoline. The concept of a vegetation isoline has been used repeatedly to

develop optimal VI models [23, 24, 34, 35] and to investigate their robustness against

external factors [62, 65]. The isoline concept has been directly used to retrieve leaf

area index and the fraction of vegetation cover [30, 66]. In recent years, the concept

has been applied to the inter-sensor calibration of VIs [41, 42].

From the application point of view, understanding of band-to-band relationship

would provide information about land cover dependency of calibration coefficients. In
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retrievals of biophysical parameter, an isoline equation with higher accuracy would

lead to better results in retrieved parameters. Moreover, biophysical parameters vary

along with the evolution of phenology, which eventually influence on reflectance spec-

tra. Since the derived coefficients of the vegetation isoline depend on the biophysical

parameters, the phenology is also related to the variation of the vegetation isoline.

Significant efforts have been devoted toward deriving useful analytical formulas

based on a model of radiative energy transfer. These derivations used a represen-

tation of the top-of-canopy (TOC) reflectance spectrum consisting of photons that

were directly reflected by the canopy layer. Because this portion of the reflectance

spectrum does not reach the soil surface beneath the canopy, it is called the zero-th

order interaction term. Photons that reached the soil surface and were reflected back

to the canopy layer by the soil surface only once contributed to the measured re-

flectance. The ‘one-time reflected’ contributions comprised the first-order interaction

term. Analogously, the reflectance spectrum consisting of photons reflected by the

soil surface n times was defined as the n-th-order interaction term. The vegetation

isoline equations were derived by truncating the second- and higher-order interaction

terms. For this reason, the derived isolines are a first-order approximation of the

vegetation isoline.

The approximation order determines the accuracy of the derived isoline equa-

tions. The accuracy of the isoline has been improved by deriving several approxima-

tions that considered the second-order terms. The accuracy has been improved by

including higher-order terms. The drawback of this inclusion is that the analytical

representation is complex. Complex representations hinder the employment of isoline

formulations in applications of various types. It would be beneficial to identify ways

of improving the isoline approximation accuracy while maintaining the simplicity of

the derived formulation.

In a previous study, we proposed a derivation technique for satisfying these re-

quirements simultaneously [85]. During the derivation, we included the second-order

interaction term only in the near-infrared band instead of retaining the second-order

term in the red band. This asymmetric approximation form dramatically improved

the accuracy of the derived isoline equation.

This study advanced the investigation one step further. The objective was to

introduce a technique for improving the accuracy of the asymmetric isoline equations

by optimizing a single factor. The goal of this improvement was to reduce the errors in

the vegetation isoline equivalent to a value equal to or smaller than the error induced

by the inherent signal-to-noise ratio (SNR) of the existing sensors. The accuracy

improvements obtained in this study were validated using a radiative transfer model of
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a system of vegetation and soil layers, the PROSAIL model [28, 72]. After optimizing

a single factor in the asymmetric approximation of the vegetation isoline equation, the

error levels of the improved isoline equations are discussed by comparing the resulting

errors with those computed directly from the signal-to-noise ratios of four existing

sensors.

3.2 Background

In this section, two forms of the vegetation isoline equation are introduced. The

magnitudes of the errors in the isoline equations differed between the two equations

and were characterized numerically.

3.2.1 Two approximations of the vegetation isoline equations

The simplest form of the vegetation isoline equation was derived by truncating the

soil–canopy interaction terms at the first-order (single interaction) [37]. The resulting

equation was simple, which is advantageous for various applications [41, 42, 62, 65–

68, 70, 71, 86]. The first-order isoline equation may be written (with the truncation

term ϵ1) as:

ρN = aγ1ρR +D1 + ϵ1, (3.1)

where γ1 and D1 are defined by:

γ1 =
T 2
N

T 2
R

, (3.2)

D1 = bT 2
N + ω (ρvN − aγ1ρvR) . (3.3)

The fraction of vegetation cover (FVC) is represented by ω, and the variables ρR

and ρN represent the TOC reflectance in the red and NIR bands, respectively. The

variables ρvR and ρvN represent the ’pure’ canopy reflectances independent of the soil

surface beneath the canopy layer. Finally, T 2
R and T 2

N represent the area-averaged

two-way transmittances (T 2
R and T 2

N), defined by:

T 2
R = ωT 2

R + 1− ω, (3.4)

T 2
N = ωT 2

N + 1− ω. (3.5)

These variables are explained in additional detail elsewhere [41, 62, 85].
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The second form of the vegetation isoline was derived by only including the in-

teraction terms up to the second-order in the NIR band. The interaction terms in

the red band could be expressed using the first-order terms. The asymmetric-order

of the approximation in the two bands significantly reduced the error in the isoline

relative to the first-order form. The asymmetric form of the vegetation isoline may

be written (with the truncation term ϵ2) as

ρN = a2ζρ2R + aγ2ρR +D2 + ϵ2, (3.6)

using the definitions:

ζ = ωT 2
NRvN/(T 2

R)
2, (3.7)

γ2 = γ1 + δ1, (3.8)

D2 = D1 + δ0, (3.9)

δ0 = ζ
(
bT 2

R − ωaρvR

)2

, (3.10)

δ1 = 2ζ
(
bT 2

R − ωaρvR

)
. (3.11)

The variable RvN represents the bi-hemispherical reflectance of the canopy layers

at the bottom surface, which appears only in the NIR band.

3.2.2 Errors in the vegetation isoline equations

The asymmetric approximation of the vegetation isoline achieved greater accuracy

than the first-order approximation. This fact could be confirmed by conducting a

set of numerical simulations and plotting the errors of the two approximated forms.

The errors of the two approximated isolines (the first-order and asymmetric-order

approximations) were computed assuming a fully covered vegetation canopy, where

the value of FVC was set to unity. The PROSAIL model was used to simulate the

TOC reflectance by varying the leaf area index (LAI) and soil reflectance spectra

(from dark to bright soil). Figure 3.1(a), (b) show plots of the error in the first-order

isoline and the asymmetric isoline, respectively, as a function of the LAI and soil

reflectance. The error in the first-order isoline reached 0.01 in reflectance units as

the soil reflectance increased. By contrast, the error in the asymmetric-order isoline

was much smaller than that in the first-order approximation, nearly one order of

magnitude smaller, as summarized in our previous study [85].

We next focused on testing whether the accuracy of the asymmetric approximation

was satisfactory from a parameter retrieval point of view. This point was examined
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Figure 3.1: (a) Error in the first-order isoline; and (b) error in the asymmetric-order
isoline. LAI: leaf area index

by comparing the isoline errors with an error equivalent to the noise level in the

reflectance measurements. The comparison was implemented by assuming a simple

scenario such that the value of the SNR in the NIR reflectance was 200 and the average

value of the NIR reflectance was 0.1 over the entire parameter range. Although

this assumption was made for the sake of simplicity, it was a rather conservative

assumption because the averaged NIR reflectance is expected to exceed 0.1 in most

cases. Under these assumptions, the noise equivalent error could be obtained as

0.0005 in reflectance units over the entire parameter range. With this quick estimate

of the noise equivalent error, Figure 3.2 shows the contour plots of the errors in the

first-order approximation (left) and in the asymmetric-order approximation (right).

The contour lines that corresponded to the value of 0.0005 are emphasized by thicker

black lines in the figures. These results indicated that the error in the first-order

approximated isoline mostly exceeded the noise equivalent error for the majority of the

cases (represented by the combinations of the LAI and the soil reflectance). Although

the error in the asymmetric-order approximation became much smaller than that of

the first-order approximation, the errors still exceeded 0.0005, especially at higher

soil reflectances. These results suggested that if the asymmetric-order approximated

isoline was used for parameter retrieval, the errors in the retrieved results would be

larger than the error introduced by the sensor noise. These results indicated that the

accuracy of the asymmetric-order approximation required further improvement.
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Figure 3.2: Comparison of the errors in the vegetation isolines with the error (0.0005)
computed from the noise corresponding to a signal-to-noise ration (SNR)
of 200 at the NIR reflectance of 0.1. The thick solid lines indicate the
contour lines corresponding to 0.0005.

3.3 Approaches

Improved accuracy was achieved by including the second-order interaction term

only in the NIR band. This modification shifted the first-order approximated isoline

upward in the reflectance subspace. Figure 3.3 illustrates this shifting process and

the mechanism by which the accuracy was improved via the asymmetric-order ap-

proximation. The degree of shifting from the first-order isoline is illustrated as the

difference, along the NIR axis, between the blue line and the red line in the figure.

This difference remained smaller than the difference between the first-order isoline

and the true vegetation isoline (illustrated as the difference between the blue line and

the black line). The gap between the asymmetric-order isoline (red line) and the true

isoline (black line) must be minimized to achieve the highest accuracy, which this

study attempts to address.

This gap could be analytically evaluated by clarifying the difference between the

first-order and the asymmetric-order isoline equations. The asymmetric-order approx-

imation form of the vegetation isoline was obtained by neglecting the higher-order

interaction term ϵ2 from Equation (3.6). The definition of γ2, Equation (3.8), was

used to express the isoline equation as:

ρN ≈ a2ζρ2R + aγ1ρR + aδ1ρR +D1 + δ0. (3.12)

After rearranging Equation (3.12) by noting the form of the first-order isoline
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Figure 3.3: Illustration of the truncation error in the vegetation isoline equations and
its improvement by this and previous studies.

Equation (3.1), the above equation could be transformed to

ρN ≈ aγ1ρR +D1 +
(
a2ζρ2R + aδ1ρR + δ0

)
. (3.13)

The term in the parentheses on the right-hand-side represents the contribution of

the asymmetric second-order term, illustrated as the distance between the blue line

and the red line in Figure 3.3. Equation (3.13) suggests that an adjustment to this

distance (overcorrection term) could fill the gap between the red line and the black

line, further improving its accuracy.

One way to adjust the overcorrection term is to introduce a factor into the last

term of Equation (3.13). The factor (represented by k) introduced into the last term

of Equation (3.13) could be explicitly introduced in the equation,

ρN ≈ aγ1ρR +D1 + k
(
a2ζρ2R + aδ1ρR + δ0

)
. (3.14)

Solving Equation (3.14) for k, we have:

k =
ρN − (aγ1ρR +D1)

a2ζρ2R + aδ1ρR + δ0
. (3.15)
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The value of k could be computed from Equation (3.15) for each combination of

the model input parameter used for the reflectance simulation. For example, selecting

LAI, FVC, and the soil reflectance of the red band RsR as the set of parameters to

be varied during the simulation, with the number of grids for each parameter set

to 21, a total of 9261 distinctive values of k will be obtained. Because k depends

on a set of parameters, the most accurate way to adjust this scenario is to model

the variations in k as a function of all parameters. Such an algorithm, however, is

not practical to implement at this stage of investigation because one must estimate

all input parameters prior to determining k. Specifically, LAI, FVC, and the soil

reflectance must be estimated to determine k. The adjustment approach may be

made more practical by determining the optimum constant for k according to the

following approach, finding a constant value for k that minimizes the error of the

adjusted isoline, Equation (3.14), over the entire range of the input parameters. This

constant is considered to be the optimum value of k, denoted by kopt in this study.

3.4 Results of the Numerical Simulations

3.4.1 Parameter settings for the numerical experiments

The variables used in a series of numerical simulations were computed using the

canopy radiative transfer code, PROSAIL [72], which consists of the leaf optical prop-

erties model (PROSPECT) [75] and the canopy reflectance model (SAIL) [87]. The

parameter settings in the simulations are summarized in Table 3.1. LAI, FVC, and

the soil brightness (soil factor) were varied in this study. LAI was varied from 0.0

to 4.0 in 0.2 increments (21 intervals). The soil factor was varied from 0.0 to 1.0 in

0.05 increments (21 variations), which were used to change the mixture ratio of the

reflectance spectra of the wet and dry soil provided with the code. The canopy re-

flectance spectra obtained using PROSAIL were linearly mixed with the soil spectra

using the fraction of vegetation cover (FVC), ω, as the weight that was varied from

0.0 to 1.0 in 0.05 increments (21 intervals). The results section focuses on the use

of a Spherical model to represent the leaf angle distribution (LAD), with the excep-

tion of the simulations presented in Section 3.4.6, which employs five LAD models

(planophile, erectophile, plagiophile, extremophile, and uniform) to examine the ef-

fects of the LAD on our simulations. The input parameters in PROSAIL, including

the other parameters fixed in this study, are listed in Table 3.1. The total number of

spectra was 9261 (21×21×21) for a single LAD. (The parameter grids are finer than

in our previous study [85].) We employed 655 nm and 865 nm reflectance spectra for

the red and NIR wavelength regions, which corresponded to the center of the red and
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NIR bands in the Landsat 8 Operational Land Imager (OLI).

Table 3.1: Input parameters used in the numerical simulations.
Geometry

Solar zenith angle 30◦

Observation zenith angle 10◦

Relative azimuth angle 0◦

Pixel Heterogeneous Property

Fraction of vegetation cover (FVC) 0.0–1.0

Canopy Properties

Leaf area index (LAI) 0.0–4.0
Hotspot size parameter 0.01

Leaf Structural and Chemical Properties

Leaf angle distribution (LAD) Spherical, Planophile, Erectophile
Plagiophile, Extremophile, Uniform

Leaf mesophyll structure 1.5
Chlorophyll-a and -b 40 µg/cm2

Carotenoid content 8 µg/cm2

Leaf mass per area 0.009 g/cm2

Equivalent water thickness 0.01 cm
Brown pigment content 0

Soil Properties

Wet soil reflectances at 655 and 865 nm 0.037 and 0.071
Dry soil reflectances at 655 and 865 nm 0.311 and 0.412
Soil factor (mixture ratio of wet and dry soils) 0.0–1.0 [0.0: wet soil; 1.0: dry soil]

3.4.2 Numerical procedure used for the isoline parameter retrieval

The parameters in the isoline equations were computed according to the proce-

dures reported previously [37, 85]. T 2
vλ and ρvλ were determined based on two hypo-

thetical simulations. First, ρvλ was computed using spectrally flat zero reflectances of

the soil surface. Subsequently, Tvλ was approximated using simulated reflectances and

a median reflectance of the soil surface, and ρvλ was computed in previous step [37].

The parameter RvN , which was required for the computation of ξ, was obtained by

conducting an additional simulation in which the soil spectrum was even brighter

than was assumed in the simulation used to compute Tvλ. The soil spectrum was also

spectrally flat in this case [85]. In the simulation, the TOC canopy reflectances in the

NIR were approximated using first- and second-order interaction terms between the

canopy layer and the soil surface,

ρN ≈ ωρvN + T 2
NRsN + ωT 2

NRvNR
2
sN . (3.16)
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where RsN represents the bi-hemispherical reflectance of the soil surface for the NIR

band. RvN was then derived by solving Equation (3.16) for RvN . The isoline param-

eters for the canopy layer were obtained using these variables. The slope and offset

of the soil line equation over the red and NIR reflectance spaces used in the isoline

parameters were obtained from a linear regression of the reflectance spectra for the

wet and dry soils, shown in Table 3.1 (a = 1.24 and b = 0.026).

3.4.3 Variations in k

The dependences of LAI, FVC, and RsR on k were analyzed based on numerical

experiments in which the k-value was computed in the previous step using Equation

(3.15). Three experimental conditions were applied to compute k: (1) FVC was

varied using three pairs of fixed LAI and RsR values; (2) LAI was varied using three

pairs of fixed FVC and RsR values; and (3) RsR was varied using three pairs of fixed

FVC and LAI values. The results of the first case are shown in Figure 3.4(a). The

k-values are plotted against FVC for “LAI = 1.0 and RsR=0.1”, “LAI = 2.0 and RsR

= 0.1”, and “LAI = 2.0 and RsR = 0.2”, denoted by the solid, dashed, and dotted

lines, respectively. The k-values were relatively insensitive to the changes in FVC.

The differences between the k values for FVC = 0.0 and FVC = 0.9 were less than

1%, and the differences for FVC = 0.0 and FVC = 1.0 were less than 3% for each

pair of LAI and RsR. The strong dependence of RsR on k was identified from the

large differences between the k-value curves obtained at RsR = 0.1 and = 0.2.

Similarly, the k-values were relatively insensitive to LAI, as shown in Figure 3.4(b)

(results are shown for the second experimental case). These k-values are plotted

against LAI for “FVC = 0.3 and RsR = 0.1”, “FVC = 1.0 and RsR = 0.1”, and

“FVC = 1.0 and RsR = 0.2”, respectively. The differences between the k-values for

LAI = 0.0 and LAI = 4.0 were less than 5%. The differences between the results

obtained for RsR = 0.1 and = 0.2 were similarly large, as shown in Figure 3.4(a).

Figure 3.4(c) presents the results obtained from the third case, which described the

k-values along RsR for “FVC = 0.3 and LAI = 1.0”, “FVC = 0.3 and LAI = 2.0”, and

“FVC = 1.0 and LAI = 2.0”, respectively. The k-values showed an approximately 50%

increase (from 0.90 to 1.35) with increasing RsR. The differences among the three

pairs of LAI and FVC affected the k-value to a much smaller degree than did the

differences between the maximum and minimum RsR values. These results indicated

that the k-values depended heavily on RsR but were nearly independent of FVC and

LAI (greenness level of the vegetation canopy).
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Figure 3.4: (a) Plot of the k-values along with the FVC over three pairs of fixed LAI
and RsR (LAI = 1.0 and RsR = 0.1, LAI = 2.0 and RsR = 0.1, and LAI
= 2.0 and RsR = 0.2); (b) Plot of the k-values along with LAI over three
pairs of fixed FVC and RsR (FVC = 0.3 and RsR = 0.1, FVC = 1.0 and
RsR = 0.1, and FVC = 1.0 and RsR = 0.2); (c) Plot of the k-values along
with RsR over three pairs of fixed FVC and LAI (FVC = 0.3 and LAI =
1.0, FVC = 0.3 and LAI = 2.0, and FVC = 1.0 and LAI = 2.0).
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3.4.4 Optimum k-values (kopt)

The k-values were computed using all possible pairs of the input parameters (FVC,

LAI, and RsR were changed; LAD was fixed to a spherical model; and all other input

parameters were fixed, as shown in Table 3.1). The optimum value of k was then

determined by computing the distances (ϵ) as the errors between the true spectra

ρρρ (including all the higher-order terms) and the vegetation isolines (the adjusted

asymmetric isolines by Equation (3.14)),

ϵ(k) = min(∥ρρρ− ρ̂ρρ(k)∥2), (3.17)

where ρ̂ρρ(k) denotes the spectra on the vegetation isolines for the k-value as the input.

Note that ϵ(k) for k = 0 and k = 1 corresponds to the error of the first-order

vegetation isoline and the asymmetric-order vegetation isoline without optimization,

respectively. More than 9261 values of k were obtained using Equation (3.15), and

each k was used to compute ϵ for 9261 patterns of the reflectance spectra. A two-

dimensional array of ϵ values with a size of 9261 (spectral dimension) × 9261 (k-value

dimension) was obtained. Figure 3.5 plots the values of ϵ averaged along the spectral

dimensions as a function of the k-values. The error ϵ decreased until the k-value

reached 1.25–1.30 and changed to an increasing function upon further increases in

the k-value.

Figure 3.5: Plot of the mean value of ϵ versus the k-value.

The optimum values of k, kopt were identified as follows: Six variations in the

k-value were assumed: 1.25, 1.26, 1.27, 1.28, 1.29, and 1.30; the errors were approx-

imated using the 9261 spectral patterns, that is, ϵ were computed for each k-value.

The mean, standard deviation (STD), and maximum of ϵ for each k-value were com-
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puted and are summarized in Table 3.2. The minimum values of the mean ϵ were

8.35 × 10−5 for k = 1.28. The values of the STD for k = 1.29 were, however, smaller

than those obtained for k = 1.28. The same applied to the maximum. Accordingly,

the optimum k-value, kopt, was determined to be 1.29 for the Spherical LAD in this

study.

Table 3.2: Statistics of ϵ(k) for k = 1.25, 1.26, 1.27, 1.28, 1.29, and 1.30. STD:
standard deviation.

LAD: Spherical

1.25 1.26 1.27 1.28 1.29 1.30

Mean 9.06 × 10−5 8.68 × 10−5 8.44 × 10−5 8.35 × 10−5 8.43 × 10−5 8.71 × 10−5

STD 1.08 × 10−4 9.54 × 10−5 8.44 × 10−5 7.58 × 10−5 7.05 × 10−5 6.89 × 10−5

MAX 7.05 × 10−4 6.36 × 10−4 5.66 × 10−4 4.97 × 10−4 4.31 × 10−4 3.66 × 10−4

3.4.5 Evaluation of kopt = 1.29

The validity of using kopt = 1.29 was then evaluated using contour plots of ϵ over

LAI and RsR space, holding FVC fixed at unity. Four variations of k (1.00, 1.25, 1.29,

and 1.30) were considered. In Figure 3.6(a), the minimum value of ϵ for k = 1.0 was

0.0002, and the errors were greater than those obtained under other conditions, as

shown in Figure 3.6. Figure 3.6(b) presents results obtained for k = 1.25 and reveals

that ϵ was less than 0.00015 for RsR <0.26. ϵ, however, it increased with increasing

RsR, especially for RsR > 0.26 and for LAI approaching 1.0. Figure 3.6(c) shows that

for k = 1.29, the maximum of ϵ was approximately 0.00025. Overall, ϵ was small

across the entire parameter space. The results of ϵ obtained for k = 1.30 were slightly

larger than the values obtained for k = 1.29 although ϵ was small for RsR > 0.26.

The error across the entire parameter space (e.g., the mean value of ϵ) was smallest

for k = 1.29 (Figure 3.6(c) and Table 3.2), although ϵ for k = 1.25 was less than the

value obtained for other k-values for RsR <0.26 (Figure 3.6(b)), and ϵ was smallest for

k = 1.30 for RsR >0.26 (Figure 3.6(d)). This experiment, therefore, validated the use

of the optimum k-value, kopt (=1.29) for minimizing the overall error in the predicted

NIR reflectances based on the adjusted asymmetric isoline equation. Furthermore,

the value of ϵ for kopt = 1.29, as shown in Figure 3.6(c), was small relative to the

noise equivalent error (0.0005).

We next computed the statistical profile of the errors in the first-order, the

asymmetric-order, and the adjusted asymmetric-order (kopt = 1.29) isoline equations.
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Figure 3.6: (a) Contour plot of ϵ over LAI and RsR space for k = 1.00; (b) Contour
plot of ϵ for k = 1.25; (c) Contour plot of ϵ for k = 1.29; (d) Contour
plot of ϵ for k = 1.30.
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Table 3.3 lists the mean, STD, and maximum approximation error in the isoline

equations. The mean values of the errors for the adjusted asymmetric-order isoline

equations were reduced to 4% and 22% of the value obtained from the first-order and

the asymmetric-order isoline equations. Likewise, the STD and maximum of the er-

rors in the adjusted asymmetric-order isoline equations were much smaller than those

obtained from other isoline equations. The statistical distribution of the errors in

the adjusted asymmetric isoline equations did not exceed the noise equivalent errors

(0.0005), even in the case of the maximum error.

Table 3.3: Statistics of the errors in first-order, asymmetric-order, and adjusted
asymmetric-order (kopt = 1.29) isoline equations.

LAD: Spherical

First-Order Asymmetric Adjusted Asymmetric adj./first adj./asym.

Mean 2.10 × 10−3 3.81 × 10−4 8.43 × 10−5 4.0% 22.1%
STD 2.43 × 10−3 5.06 × 10−4 7.05 × 10−5 2.9% 13.9%
MAX 1.35 × 10−2 2.67 × 10−3 4.31 × 10−4 3.2% 16.1%

3.4.6 Evaluation of kopt = 1.29 for various LADs and variations in the

optimum k-value

The performances of the derived isoline equations for kopt = 1.29 were evaluated

over various LADs in PROSAIL, including planophile, erectophile, plagiophile, ex-

tremophile, and uniform distributions, respectively. Table 3.4 lists the statistical

analysis associated with approximating errors in the isoline equations (mean, STD,

and maximum). The statistical distribution of the planophile was nearly identical

to that of the Spherical model, as shown in Table 3.3. In other LADs, the statis-

tical distributions of the derived equations were nearly equal to or more than half

of the corresponding distributions of the other isoline equations. Also, although the

maximum errors could exceed the noise equivalent error (0.0005), the mean values of

the errors were less than 0.0004 for all LADs. This fact indicated that the adjusted

asymmetric isoline equations with kopt = 1.29 provided acceptable results, regardless

of the choice of LAD.

The optimum values of k for the various LADs were explored using the algorithm

presented in Section 3.4.4. The approximation errors ϵ with size of 9261 (spectral

dimension) × 9261 (k-value dimension) were computed for each LAD, and the values

of ϵ averaged along the spectral dimensions were computed and plotted as a function
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of the k-value for each LAD. Figure 3.7 plots the mean ϵ versus k-value for the

various LADs. The k-values that provided the minimum value of the mean ϵ were

approximately 1.2–1.3, except for the erectophile model, indicating that the minimum

value of the mean ϵ occurred for k >1.5.

Table 3.5 lists the optimum k-value and mean, STD, and maximum ϵ, where ρ̂N

was computed using the optimum k-value for each LAD obtained in our simulations.

The mean values of the errors were approximately equal to or smaller than 0.0001.

The magnitude of the STD of the errors was similar to that of mean. The maximum

value of the errors was less than the noise equivalent error (0.0005), except for the

erectophile model. The appropriate selection of the optimum k-value thus led to an

accurate prediction of the NIR reflectances, but the use of kopt = 1.29 provided an

acceptable accuracy in terms of the SNR, even though this accuracy was not optimal

for each LAD.

3.4.7 Comparison with the noise-equivalent errors in satellite sensors

This study sought to decrease the errors associated with predicting the NIR re-

flectances by using red reflectances in the vegetation isoline equations. The goal was to

decrease the errors to the level of the intrinsic errors of the sensor SNR values. There-

fore, the errors in the first-order, the asymmetric-order, and the adjusted asymmetric

isoline equations with kopt = 1.29 were compared with the error arising from the SNR

of the Earth observation sensors currently in space orbit. We employed the SNRs

of four sensors, including the Aqua-Moderate Resolution Imaging Spectroradiome-

ter (MODIS) [88], the Landsat 8-Operational Land Imager (OLI) [89], the Green-

house Gases Observing Satellite (GOSAT)-Cloud and Aerosol Imager (CAI) [90],

and the Suomi National Polar-orbiting Partnership (SNPP)-Visible Infrared Imaging

Radiometer Suite (VIIRS) [91], as summarized in Table 3.6.

The ratio of the relative errors in the isoline equations to the sensor SNR (r) was

computed according to:

r =
ϵ(k)

(ρN/SNR)
(3.18)

The isoline equations were superior to the noise equivalent errors for values of

less than unity, whereas the equations were inferior to the noise equivalent errors for

values greater than unity. For comparison, the FVC and LAD were fixed, respectively,

to unity and spherical.

Figure 3.8 plots r over the LAI-RsR space. Thicker black lines correspond to r

= 1.0. MODIS, OLI, CAI, and VIIRS correspond to the four rows of Figure 3.8
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Figure 3.7: Plot of the mean ϵ as a function of the k-value for the planophile, erec-
tophile, plagiophile, extremophile, and uniform LADs, respectively.
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Table 3.4: Statistical distributions of the errors in the first-order, asymmetric-order,
and adjusted aymmetric-order (kopt = 1.29) isoline equations for the five
LADs, including planophile, erectophile, plagiophile, extremophile, and
uniform distributions.

LAD: Planophile
first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 2.07 × 10−3 3.69 × 10−4 8.39 × 10−5 4.1% 22.7%
STD 2.40 × 10−3 4.91 × 10−4 6.76 × 10−5 2.8% 13.8%
MAX 1.34 × 10−2 2.59 × 10−3 3.79 × 10−4 2.8% 14.6%

LAD: Erectophile
first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 3.08 × 10−3 8.83 × 10−4 3.89 × 10−4 12.6% 44.1%
STD 3.54 × 10−3 1.12 × 10−3 5.53 × 10−4 15.6% 49.4%
MAX 1.87 × 10−2 5.79 × 10−3 2.95 × 10−3 15.8% 50.9%

LAD: Plagiophile
first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.71 × 10−3 2.31 × 10−4 1.35 × 10−4 7.9% 58.4%
STD 2.00 × 10−3 3.15 × 10−4 1.24 × 10−4 6.2% 39.4%
MAX 1.13 × 10−2 1.62 × 10−3 7.78 × 10−4 6.9% 48.0%

LAD: Extremophile
first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.89 × 10−3 2.64 × 10−4 1.37 × 10−4 7.2% 51.9%
STD 2.19 × 10−3 3.57 × 10−4 1.20 × 10−4 5.5% 33.6%
MAX 1.23 × 10−2 1.84 × 10−3 7.04 × 10−4 5.7% 38.3%

LAD: Uniform
first-order isoline asymmetric isoline adjusted isoline adj./1st adj./asym.

Mean 1.79 × 10−3 2.44 × 10−4 1.38 × 10−4 7.7% 56.6%
STD 2.09 × 10−3 3.32 × 10−4 1.24 × 10−4 5.9% 37.3%
MAX 1.17 × 10−2 1.71 × 10−3 7.60 × 10−4 6.5% 44.4%

from the top to the bottom. From the left to the right column, the results of the

first-order, asymmetric-order, and adjusted asymmetric-order isoline equations are

plotted. The results of first-order isoline equations (Figure 3.8(a),(d),(g),(j)) indicate

that r exceeded unity over a large area of parameter space. The asymmetric-order

isoline equations resulted in smaller values of r and exceeded unity for relatively large

values of RsR; however, the areas of these parts were significantly smaller than the

area observed in the first-order isoline, as shown in Figure 3.8(b),(e),(h),(k). Finally,

the results of r obtained from the adjusted asymmetric-order isoline equations (Figure

3.8(c),(f),(i),(l)) revealed that r never exceeded unity, and the maximum values of r

were less than 0.5 for all sensors. In summary, the errors in the adjusted asymmetric
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Table 3.5: Optimum k-value and statistical distributions of the errors in the adjusted
asymmetric isoline equations, with the optimal k-values for each of the
five LADs, including the planophile, erectophile, plagiophile, extremophile,
and uniform distributions.
LAD Optimum k Mean STD MAX

Planophile 1.28 8.17 × 10−5 7.03 × 10−5 4.44 × 10−4

Erectophile 1.53 1.69 × 10−4 1.39 × 10−4 8.31 × 10−4

Plagiophile 1.19 5.99 × 10−5 6.23 × 10−5 4.08 × 10−4

Extremophile 1.2 6.65 × 10−5 6.67 × 10−5 4.40 × 10−4

Uniform 1.20 6.31 × 10−5 6.01 × 10−5 3.81 × 10−4

Table 3.6: SNR in the red and NIR bands for the Aqua-Moderate Resolution Imag-
ing Spectroradiometer (Aqua-MODIS) [92], Landsat 8-Operational Land
Imager (Landsat 8 OLI) [93], Greenhouse Gases Observing Satellite
(GOSAT)-Cloud and Aerosol Imager (CAI) [94], and Suomi National
Polar-orbiting Partnership (NPP)-Visible Infrared Imaging Radiometer
Suite (VIIRS) [95]. SNR for MODIS band1 (red) was derived by cal-
culating 128 (sensor design requirement) × 1.57 (ratio of measured SNR
in-orbit to sensor design requirement) and SNR for MODIS band 2 (NIR)
was derived by 201× 2.64 [92]. Similaly, SNR for VIIRS I1 and I2 bands
(red and NIR) were derived by caluculating 119 × 1.76 and 150 × 1.5,
respectively [95].

MODIS Landsat8 OLI GOSAT-CAI VIIRS

Red band 201 227 200 209
NIR band 530 201 200 225

isoline equations with kopt = 1.29 were smaller than the error arising from the SNR

of the four Earth observation sensors.

3.5 Discussion and Conclusions

The asymmetric-order isoline equations, derived from a previous study, were re-

formulated as first-order isoline equations plus a correction term multiplied by a

parameter k. The derived equations with optimized k (as a constant) improved the

accuracy of the asymmetric-order isoline equations while retaining the simplicity of

the equations. The k-value was assumed to be a function of LAI, FVC, and RsR, and

the influences of RsR on k were much greater than the influences of LAI and FVC

such that k could be considered primarily to be a function of RsR. One advantage of
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the isoline equations was that the parameters in the equations were independent of

the soil brightness, i.e., RsR; therefore, we fixed the k-value to an optimum instead

of varying this parameter as a function of RsR.

The errors in the adjusted asymmetric-order isoline equations were computed

using kopt. The errors in the reflectances predicted by the adjusted asymmetric-order

isoline equations with kopt were 4% and 22% of the errors predicted using the first-

order and asymmetric-order isoline equations, respectively.

The value of kopt was optimal for the Spherical LAD. The adjusted asymmetric-

order isoline equations with kopt reduced the errors significantly in the reflectances

calculated using any of the six LADs defined in this study (less than half of the

errors for the asymmetric-order isoline equations), although the use of the optimal

k-value along with each LAD reduced the errors more significantly. In addition, the

errors in the adjusted asymmetric-order isoline equations were small over the entire

parameter space relative to the noise equivalent errors computed from the SNR of the

satellite sensors currently in orbit (Aqua-MODIS, Landsat 8-OLI, SNPP-VIIRS, and

GOSAT-CAI). The first-order and asymmetric-order isoline equations displayed both

superiority and inferiority to the noise equivalent errors by relying on the canopy and

soil conditions.

This study achieved its goal of reducing the error in the adjusted asymmetric-

order isoline equations using a fixed k-value, yielding an error that was less than the

noise equivalent errors based on the SNRs of some major satellite sensors, without

complicating the isoline equations. Validation of the derived equations would require

additional numerical experiments involving the application of other radiative transfer

models of the vegetation canopy. Improved accuracy in the equations may be neces-

sary if the sensor’s SNR were to increase as a result of technological advancements in

the sensor instrument design.
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Figure 3.8: Contour plots of r over LAI-Rsr space. From the top to the bottom, each
plot correspond to the MODIS, OLI, CAI, and VIIRS sensors, respec-
tively. From the left to right column, each plot corresponds to the first-
order, asymmetric-order, and adjusted asymmetric-order (kopt = 1.29)
isoline equations, respectively. The bold line indicates r = 1.0.
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CHAPTER IV

Optimization Technique of Asymmetric-Order

Vegetation Isoline Equations

4.1 Introduction

Remotely sensed reflectance spectra have been used to estimate biophysical pa-

rameters on terrestrial vegetation. The relationships between reflectances of two

bands (e.g., red and NIR bands) are key information in the parameter retrievals and

are unique to the parameters such as LAI and chlorophyll content in a leaf. Sev-

eral band algebra called vegetation index (VI) based on the inter-band relationships

have been developed and theoretically analyzed in previous studies that are proximity

measure of biophysical parameters[23, 24, 34]. In addition, inter-band relationships

have been investigated by analytical methods using vegetation isoilne equations. The

vegetation isoline equations provide analytical relationships between reflectances of

two bands and are capable of describing LAI isoline over two-dimensional reflectance

space. The isoline equations could be used to directly retrieve biophysical param-

eters such as the fraction of green cover[30], LAI, and the chlorophyll content[44].

Additional applications of the inter-band relationship described by vegetation isoilne

equations have been reported by numerous studies for analytically relating the VIs

collected by different sensors in inter-calibration studies[42, 79].

The canopy model used for deriving vegetation isoline equations consists of a

turbid medium, and top-of-canopy reflectances are represented by the adding method.

The vegetation isoline equations were derived by truncating the second- and higher-

order interaction terms between vegetation canopy and soil surfaces[23, 37]. The

isoline equation including only the first-order interaction term is referred to as the

first-order vegetation isoline equation, and its accuracy deteriorates as the brightness

of the soil surface increases. In our works introduced in previous chapters, efforts have

been applied toward improving the accuracy of the isoline equation while retaining its

49



simplicity. The first step of the efforts provided asymmetric-order approximation of

the vegetation isoline equations by retaining the second-order interaction term only

in the NIR band [85], and the next step added only one factor to asymmetric-order

vegetation isoline equation and the factor was optimized using various conditions of

canopy and soil[96]. This equation with the optimized factor is called the optimized

asymmetric-order vegetation isoline equation. Errors in the optimized asymmetric-

order isoline equation were reduced to approximately 4% of the error of the first-

order isoline equation[85] and approximately 20% of the error of the asymmetric-order

isoline equation[96]. In addition, the errors in the optimized asymmetric-order isoline

equations were smaller for all the conditions assumed in the previous study relative

to the noise equivalent errors computed from SNR of the satellite sensors.

Accuracy improvements and evaluations of the vegetation isoline equations re-

ported in the previous chapters were limited to the pair of red and NIR bands (central

wavelengths were 655 nm and 865 nm, respectively). However, in recent years, hyper-

spectral sensors are available for remote sensing of Earth environment, and several

hyperspectral missions are currently planned for global observations for environmen-

tal and geological remote sensing[97–100]. Such hyperspectral sensors allows us to

process more than one hundred bands and to improve the accuracy of remote sensing

applications. Performances of vegetation isoline equations should be evaluated to sev-

eral pairs of spectral bands in solar reflective wavelength ranges in order to explorer

the potential utilities and evaluate accuracy in the isoline equations for parameter re-

trievals on environmental applications. In this chapter, accuracy of vegetation isoline

equations derived in previous chapters is evaluated in the wavelength range between

400 nm and 1200 nm using numerical simulations.

4.2 A Series of Derived Vegetation Isoline Equations

4.2.1 Vegetation isoline equations

The vegetation isoline equations derived in previous studies included first-order,

asymmetric-order, and optimized asymmetric-order vegetation isoline equations as

the followings.
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First-order vegetation isoline equation

In first-order vegetation isoline, the second- and higher-order interaction terms

were truncated in two bands (λ1 and λ2). The isoline equation is expressed by

ρλ2 = aγ1ρλ1 +D1 + ϵ1, (4.1)

and γ1 and D1 are defined by

γ1 =
T 2
λ2

T 2
λ1

, (4.2)

D1 = bT 2
λ2

+ ω (ρvλ2 − aγ1ρvλ1) , (4.3)

where ω is the fraction of vegetation cover (FVC). ρλ1 and ρλ2 are top-of-canopy

reflectances in the two wavelengths. ρvλ1 and ρvλ2 are the ‘pure’ canopy reflectances

independent of the soil surface beneath the canopy layer. T 2
λ1

and T 2
λ2

represent the

two-way transmittances of the vegetation canopy. The two constants, a and b, stand

for the soil line slope and offset, respectively.

Asymmetric-order vegetation isoline equation

The asymmetric-order form was derived by including the interaction terms up to

the second-order term in λ2 while including the terms up to the first-order interaction

in λ1[85]. This expression is written by

ρλ2 = a2ζρ2λ1
+ aγ2ρλ1 +D2 + ϵ2, (4.4)

using the following definitions

ζ = ωT 2
λ2
Rvλ2/(T

2
λ1
)2, (4.5)

γ2 = γ1 + δ1, (4.6)

D2 = D1 + δ0, (4.7)

δ0 = ζ
(
bT 2

λ1
− ωaρvλ1

)2

, (4.8)

δ1 = 2ζ
(
bT 2

λ1
− ωaρvλ1

)
, (4.9)

where Rvλ2 is the bi-hemispherical reflectance of the canopy layers at the bottom

surface, which appeared only in the destination band, λ2.
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Optimized asymmetric-order vegetation isoline equation

The asymmetric-order form was obtained by neglecting the higher-order interac-

tion term ϵ2 in Eq. (4.4),

ρλ2 ≈ a2ζρ2λ1
+ aγ1ρλ1 + aδ1ρλ1 +D1 + δ0. (4.10)

After rearranging Eq. (4.10) by noting the form of the first-order isoline (Eq. (4.1)),

the above equation could be transformed to

ρλ2 ≈ aγ1ρλ1 +D1 +
(
a2ζρ2λ1

+ aδ1ρλ1 + δ0
)
. (4.11)

We introduced a factor k into the last term of the right-hand-side of Eq. (4.11) to

have the optimized asymmetric-order vegetation isoline as

ρλ2 ≈ aγ1ρλ1 +D1 + k
(
a2ζρ2λ1

+ aδ1ρλ1 + δ0
)
. (4.12)

Note that the factor k will be optimized prior to evaluation for accuracy of the

vegetation isoline equation, although it is variable at this point.

4.2.2 Errors in the vegetation isoline equations

The errors potentially included in three isoline equations were simulated by numer-

ical experiments in which λ1 and λ2 correspond to red and NIR bands, respectively.

The PROSAIL model was used to simulate the spectral reflectances and transmit-

tances as a function of the leaf area index (LAI) and soil reflectance spectra (from

dark to bright soil). Figure.4.1 shows the errors for three forms of isolines (top,

middle, and bottom plots correspond to first-order, asymmetric-order, and optimized

symmetric order forms, respectively.) The results for FVC=1.0 and FVC=0.5 cor-

respond to left and right column in Fig. 4.1, respectively. The errors observed in

the asymmetric-order form was smaller than that of the first-order form but increases

with increasing soil brightness. The errors in the optimized asymmetric-order form

were much smaller than that of other forms even if the soil brightness increases. This

accuracy improvement was observed because of a single factor added and optimized

into the asymmetric-order vegetation isoline equation.
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Figure 4.1: Errors in first-order (upper panels), asymmetric-order (middle panels),
and optimized asymmetric-order isoline equations (bottom panels) for
red and NIR wavelength pairs as a function of LAI and soil reflectances
when FVC was 1.0 (left panels) and 0.5 (right panels).
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4.3 Method

4.3.1 Analytical expression of k and finding optimum k for each wave-

length pair

The factor, k added in the asymmetric-order isoline equation can be derived by

solving Eq. (4.12) for k,

k =
ρλ2 − (aγ1ρλ1 +D1)

a2ζρ2λ1
+ aδ1ρλ1 + δ0

, (4.13)

where the symbol for approximations originally included in Eq. (4.12) was replaced by

the equal sign. Eq. (4.13) implies that the factor k depends on biophysical parameters

as well as soil line parameters, and thus, k is not a constant. It indicates that there

would be an optimum value for k that relies on biophysical and soil conditions and

that such k can minimize the error in the asymmetric-order vegetation isoline.

k in Eq.(4.13) depends on the biophysical and soil line parameters; however, it

is not realistic to find biophysical- and soil-condition dependent k on actual satellite

data due to the difficulty in accurately estimating such parameters. Therefore, our

approach for tackling this problem is to find a single value of k for each wavelength

pair that minimizes the error of the isoline equation with k for various conditions of

biophysical and soil line parameters using numerical simulations.

4.3.2 Parameter setting and approximation of isoline parameter in nu-

merical experiments

Numerical simulations of vegetation isoline equations (Eqs.(4.1), (4.4), and (4.12))

were conducted with various conditions of LAI, FVC, and soil factor (soil brightness)

for various wavelength pairs. The spectral band-dependent variables used in numeri-

cal simulaltions were computed using the canopy radiative transfer code, PROSAIL

[72], which combined PROSPECT leaf optical properties model[75] and SAIL canopy

bidirectional reflectance model[87]. The parameter settings in the simulations are

shown in Table4.1. LAI was varied from 0.0 to 4.0 in 0.8 increments (6 variations).

The soil factor was varied from 0.0 to 1.0 in 0.2 increments (6 variations), which were

used to change the mixture ratio of the reflectance spectra of the wet and dry soil

provided with the code. The canopy reflectance spectra obtained using PROSAIL

were linearly mixed with the soil spectra using FVC, ω, as the weight that was varied

from 0.0 to 1.0 in 0.2 increments (6 variations). The present study uses the Spherical

model for leaf angle distribution (LAD). The other input parameters in PROSAIL
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fixed in this study, are listed in Table4.1. The total number of condition was thus 216

(6×6×6). Isoline equations for these conditions were simulated for various pairs of

wavelength, λ1 and λ2 where λ2 varies from 400 nm to 1200 nm in 10 nm increments

while λ1 varies from 400 nm to λ2 minus 10 nm in 10 nm increments.

Table 4.1: Input parameters used in the numerical simulations.

Geometry

Solar zenith angle 30◦

Observation zenith angle 10◦

Relative azimuth angle 0◦

Pixel heterogeneous property
Fraction of vegetation cover (FVC) 0.0-1.0

Canopy properties
Leaf area index (LAI) 0.0-4.0
Hotspot size parameter 0.01

Leaf structural and chemical properties
Leaf angle distribution (LAD) Spherical
Leaf mesophyll structure 1.5
Chlorophyll-a and -b 40 µg/cm2

Carotenoid content 8 µg/cm2

Leaf mass per area 0.009 g/cm2

Equivalent water thickness 0.01 cm
Brown pigment content 0

Soil properties
Soil factor (mixture ratio of wet and dry soils) 0.0–1.0 [0.0: wet soil; 1.0: dry soil]

The algorithm for computing parameters in vegetation isoline equations is identical

to that used in the previous studies for simulating vegetation isolines [37],[85],[96].

The parameter for canopy reflectance, ρvλ was computed using spectrally flat zero

reflectance of the soil surface. The two-way transmittances for vegetation canopy,

T 2
vλ was approximated using simulated TOC reflectance with a median reflectance of

the soil surface where ρvλ was computed in previous step[96]. In the simulation, the

TOC canopy reflectances in the λ2 were approximated using first- and second-order

interaction terms between the canopy layer and the soil surface,

ρλ2 ≈ ωρvλ2 + T 2
λ2
Rsλ2 + ωT 2

λ2
Rvλ2R

2
sλ2

. (4.14)

where Rsλ2 represents the bi-hemispherical reflectance of the soil surface for the λ2

band. The spherical albedo of canopy layer, Rvλ2 was obtained by solving Eq. (4.14)
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for Rvλ2 in which a soil spectrum was brighter than that for the simulation used to

compute T 2
λ . The soil spectrum was also spectrally flat in this case [85]. The slope

and offset of the soil line equation over the λ1 and λ2 reflectance spaces were obtained

from a linear regression of the reflectance spectra for the wet and dry soils, shown in

Table 4.1. The TOC reflectance spectra used for describing true isolines were simply

the output of the PROSAIL.

4.3.3 Errors in isoline equations and finding optimum k

Errors of vegetation isoline equations were measured using the distance between

true and approximated isolines (ϵ(k)),

ϵ(k) = ||ρ̂(k)− ρ||2, (4.15)

where ρ̂(k) denotes the spectrum derived by asymmetric-order vegetation isoline equa-

tions with k. ρ denotes the spectrum on the vegetation isoline including all the

higher-order interaction terms, i.e., the true spectrum. Note that first-order and

asymmetric-order isoline equations corresponds to k = 0 and k = 1 in Eq.(4.12) so

that errors in three isoline equations can be measured by Eq.(4.15).

The optimum value of k in Eq.(4.12) for each wavelength pair was explored based

on ϵ(k). First, values of ϵ(k) in Eq.(4.15) were computed along 216 k values and

216 conditions of the surface. Therefore, the dimension of the ϵ(k) was 216 (k value

variations) by 216 (surface condition variations). The two-dimensional matrix of the

ϵ(k) was averaged to provide an array of the means of ϵ(k) as a function of k value,

and the optimum k value, referred to as kopt was determined by selecting the k value

that minimized the mean of ϵ(k)[96],[101].

In consequences, errors in the optimized asymmetric-order isoline equation can be

evaluate by computing ϵ(kopt).

4.4 Results and Discussions

4.4.1 Analysis of kopt

Figure 4.2 depicts values of kopt as a function of λ1 and λ2. kopt was larger than 1

when λ1 fell in 400-710 nm and λ2 fell in 710-1200 nm. kopt was lower than 0 when

λ1 fell in 520-660 nm and λ2 fell in 560-690 nm as well as when λ1 fell in 1070-1150

and λ2 fell in 1130-1200 nm. Other wavelength pairs in Fig. 4.2 resulted in kopt that

lies between 0 to 1.
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Figure 4.2: kopt as a function of λ1 and λ2.

Figure 4.3 shows kopt as a function of λ1 for four λ2 (800, 860, 920 and 970 nm).

These wavelengths for λ2 were selected based on bandpass filters of NIR band for

Earth observation sensors. Figure 4.3(a) shows results for 400 nm ≤ λ1 ≤ 1000 nm

and Figure 4.3(b) shows results for 400 nm ≤ λ1 ≤ 700 nm. kopt values ranged from

1.2 to 1.4 when λ1 was less than 700 nm, and kopt rapidly decreased at approximately

700 nm and approached 0 with increasing wavelength.

Figure 4.4 shows kopt as a function of λ2 for four λ1 (470, 510, 640, and 860 nm).

Note that λ2 was selected for horizontal axis in this case. Wavelengths chosen for λ1

correspond to visible to near-infrared band for Japanese geostationary satellite sensor,

Himawari-8 Advanced Himawari Imager (AHI). In general, a non-linear function of

kopt along λ2 was observed in the results. The value of kopt fell in -0.5 to 1.4 when

λ1 corresponds to visible band while kopt fell in 0-0.35 when λ1 corresponds to NIR

band (Figs.4.4). Local maximum and minimum were found in the results in Fig.4.4

for the case of λ1 = 470. The local maximum was 0.92 at about 550 nm and local

minimum was 0.36 at about 670 nm. Similarly, the local maximum and minimum

for λ1 = 510 were found in the same wavelengths to λ1 = 470, and values of the

maximum and minimum were 0.73 and -0.24, respectively. No local maximum was

found for λ1 = 640 and local minimum at 670 nm was -0.49. The local maximum and

minimum were observed for λ1 = 860 but wavelengths of these extreme values were

57



(a) (b)

Figure 4.3: kopt as a function of λ1 for four λ2(800, 860, 920, and 970 nm).

located at more than 1000 nm.

There were relationships between kopt and TOC reflectance values that depends

on the pair of wavelengths. kopt was greater than 1 when TOC reflectances for λ2

was greater than that for λ1. Such case appears when λ1 and λ2 correspond to

visible and NIR bands, respectively. For example, Fig.4.5(a) and 4.5(b) show TOC

reflectances for various LAI on bright and dark soils, respectively, and reflectances

for visible bands were much lower than NIR bands. On contrary, kopt was less than

0 when TOC reflectances for λ2 was less than that for λ1. kopt fell in 0-1 when TOC

reflectances of two wavelengths were similar.

4.4.2 Comparison of errors in three vegetation isolines

Accuracies of three vegetation isoline equations, i.e., first-order, asymmetric-order,

and optimized asymmetric-order vegetation isoline equations were evaluated. Com-

parisons of the accuracy were performed based on the averaged value of the ϵ(k)

computed using the 216 conditions for each wavelength pair. The averaged value of

the ϵ(k) is called ‘mean epsilon’.

Figure 4.6 shows the mean epsilon as a function of λ1 and λ2 for first-order,

asymmetric-order, and optimized asymmetric-order (4.6a, 4.6b, and 4.6c). The mean

epsilon of asymmetric-order vegatation isoline equation was smaller than fist-order

vegataion isoline equation when λ1 fell in 400-710 nm and λ2 fell in 710-1200 nm.

In contrast, the mean epsilon of asymmetric-order vegatation isoline equation was

greater than fist-order vegataion isoline equation for the case that both λ1 and λ2
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Figure 4.4: kopt as a function of λ2 for four λ1 (470, 510, 640, and 860 nm).

fell in 720-1200 nm. The mean epsilon of asymmetric-order isoline equation was

approximately equal to that of the first-order isoline equation when both λ1 and

λ2 fell in 400-700 nm. The optimized asymmetric-order vegetation isoline equation

resulted in that mean epsilon is less than 0.001 and much smaller than that of other

two isoline equations for all the pair of wavelength.

The mean epsilons of three isolines were directly compared for the wavelength

pairs of nearly continuous λ1’s (10 nm increments) and four λ2’s. Figure 4.7 shows

plots of the mean epsilon for the pair of four λ2’s (800, 860, 920, and 970 nm) and λ1

(400 nm-λ2 with 10 nm increments). The mean epsilon of first-order isoline equation

was greater than other isoline equations when λ1 was less than approximately 700
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Figure 4.5: Top-of-canopy (TOC) reclectances for various LAI for bright soil (a) and
dark soil (b).

nm for four λ2’s. However, the smaller the difference between λ1 band and λ2 band

(λ1 > 700 nm), first-order vegetation isoline error decrease. The mean epsilon of first-

order isoline equation showed smaller values than that of asymmetric-order isoline

equation when λ1 was greater than approximately 750 nm. The mean epsilon of

asymmetric-order vegetation isoline equation showed 2.0-3.0×10−4 for λ1 < 700 nm

but the mean epsilon increased rapidly for λ1 > 700 nm. The optimized asymmetric-

order vegetation isoline resulted in smallest values of the mean epsilon for the pair

of four λ2’s and λ1 (400 nm-λ2). These results indicate that superiority among first-

and asymmetric-order isoline equations depends on the pair of wavelength and that

optimized asymmetric-order isoline equations was most accurate among three isoline

equations.

The accuracy of three isoline equations for the pair of four λ1’s and nearly con-

tinuous λ2’s was evaluated in Fig. 4.8. The figure shows plots of the mean epsilon

along λ2 for four λ1’s ,460, 510, 640, 860 nm, respectively. The mean epsilon of three

isolines was close to 0 when λ1 corresponds to the visible band and λ2 was less than

about 700 nm (Fig4.8(a), 4.8(b), and 4.8(c)) while the mean epsilon showed increasing

trends until about 1100 nm when λ2 was greater than 700 nm where the mean epsilon

of first-order isoline was greatest among three isolines, followed by asymmetric-order

isolines and optimized asymmetric-order ones. The mean epsilon of asymmetric-order

isoline equation, however, showed the largest mean epsilon among three isolines when

λ1 is 860 nm (Fig.4.8(d)).

60



4.4.3 On the inverse proportion of the number of higher order terms and

the accuracy of vegetation isoline equations

The results in Fig.4.7 indicated that first-order isoline equations could be more

accurate than asymmetric-order isoline equations in specific pairs of wavelength. The

reason for this unexpected results is carefully investigated here.

Figure 4.9 shows true vegetation isoline and spectra predicted by three vegetation

isoline equations over λ1 and λ2 band reflectance space. The wavelengths of 860 nm

was employed for λ2. λ1 used in Fig.4.9 was 690, 710, 730, and 850 nm, respectively.

The wavelength used for λ1 in plot located in lower right in Fig. 4.9 was λ2 minus 10

nm. The wavelengths for λ1 (690, 710, 730, and λ2 minus 10 nm) were chosen based

on results in Fig.4.7(b) where first-order isoline showed large errors at about 670 nm,

asymmetric-order isoline showed smallest errors at 710 nm, first- and asymmetric-

order isolines showed similar level of errors at 730 nm, and first-order isoline showed

smallest errors at λ2 minus 10 nm. LAI and FVC values used in simulations for

Fig. 4.9 were 1.6 and 1.0, respectively. Blue circles in Fig.4.9 depict first-order iso-

line equation, red dashed line depicts asymmetric-order isoline equation, green cross

depicts optimized asymmetric-order isoline equation, and black line is the true spec-

trum. Figure 4.9(a) indicates that accuracy of asymmetric-order vegetation isoline

is higher than first-order vegetation isoline, since the asymmetric one is closer to

true isoline. The asymmetric-order isoline in Fig.4.9(b) was much closer to true one

relative to that in Fig.4.9(a). However, spectra approximated by asymmetric-order

isoline exceeded true isoline in Fig.4.9(c) and the distance between true isoline and

asymmetric-order isoline was almost identical to distance between true isoline and

first-order isoline. The distance between true isoline and asymmetric-order isoline

become larger and first-order isoline was likely described on true isoline in Fig.4.9(d).

The shifting trends of asymmetric- and first-order isolines indicates that isoline equa-

tions that includes higher-order terms asymmetrically were not necessarily accurate

and that higher-order terms in vegetation isoline could over-correct the errors in some

pair of wavelength. In other words, including the higher-order terms asymmetrically

can shift ρλ2 upper direction more than necessary (this fact can be more clearly un-

derstood in Fig.4.10.) The optimized asymmetric-order isoline, however, showed most

accurate results among three isolines, that is, the isoline was closest to true isoline for

four cases in Fig.4.9. It implies that kopt in the optimized asymmetric-order isoline

worked properly for correcting errors in the vegetation isoline equation for any pair

of wavelength.
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4.5 Conclusions

Numerical simulations were conducted for characterizing kopt included in opti-

mized asymmetric-order isoline equations as well as evaluations of accuracy for first-

order, asymmetric-order, and optimized asymmetric-order isoline equations using var-

ious pairs of wavelength spanning between 400 nm and 1200 nm.

The factor k added in asymmetric-order isoline equations was simulated using

various conditions for each pair of wavelength, and its optimum value, kopt was com-

puted for each wavelength pair. The value of kopt depended on the wavelength pair,

but the value was not necessarily unique to the pair. In general, there exist relation-

ships between kopt and characteristics of reflectances of two bands. kopt was greater

than 1 when reflectances of λ2 was greater than that of λ1, kopt fell between 0 and 1

when reflelctances of λ1 and λ2 were nearly identical, and kopt was less than 0 when

reflectances of λ2 was less than that of λ1.

The optimized asymmetric-order isoline equation was most accurate among three

isoline equations for all the wavelength pairs evaluated in this study. The asymmetric-

order isoline equation, in general, showed accurate results relative to the first-order

isolin equation, but the relation was not observed in specific pairs of wavelength;

for example, asymmetric-order isoline equation was more accurate than first-order

isoline equation when reflectances for λ2 were greater than that of λ1. However,

the asymmetric-order isoline equation was not necessarily superior to the first-order

isoline equation when reflectances of two bands were mostly identical. This could be

caused by the effects of over-correction term that is only included in λ2 band.

Further investigation of kopt and accuracy assessment of isoline equations are re-

quired by expanding conditions of numerical simulations and for evaluating potential

utilities of the optimized asymmetric isoline equations on inter-sensor calibration of

VI as well as inversion of biophysical retrievals in future works.
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Figure 4.6: Mean epsilon for (a) first-order, (b) asymmetric-order, and (c) optimized
asymmetric-order isoline equations (ϵ (k = 0), ϵ (k = 1), and ϵ (k = kopt))
as a function of λ1 and λ2.
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Figure 4.7: Plot of mean epsilon for first-order, asymmetric-order, and optimized
asymmetric-order isoline equations (ϵ (k = 0), ϵ (k = 1), and ϵ (k = kopt))
as a function of λ1 for four λ2’s ((a) 800 nm, (b) 860 nm, (c) 920 nm, (d)
970 nm).
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(a) (b)

(c) (d)

Figure 4.8: Plot of mean epsilon for first-order, asymmetric-order, and optimized
asymmetric-order isoline equations (ϵ (k = 0), ϵ (k = 1), and ϵ (k = kopt))
as a function of λ2 for four λ1’s ((a) 460 nm, (b) 510 nm, (c) 640 nm, (d)
860 nm ).
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Figure 4.9: Plot of the true spectrum, first-order, asymmetric-order, and optimized
asymmetric-order vegetation isoline equations, in which λ2 is 860nm, and
λ1 are 690, 710, 730, and λ2 minus 10 nm, respectively ((a), (b), (c), and
(d)).
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Figure 4.10: Outline on mechanisms of over-correction of asymmetric-order vegeta-
tion isoline equation.
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CHAPTER V

Conclusions

This study attempted accuracy improvement of vegetation isoline equations which

represent a relationship between reflectances of two distinctive wavelengths. Original

form of the isoline equation was derived by assuming a single interaction of photon

between the canopy and soil layer. The major external influence that causes variations

of reflectance spectra is soil brightness underneath the canopy layer. This influence

was considered, during the derivation, in terms of soil line which is a well-known

concept and hence used frequently to model soil spectral variation in this field of

study. The derived relationship was named as the first-order approximated vegetation

isoline equation.

The first-order vegetation isoline is simple as a form which is considered as a strong

advantage of the formulation. This advantage is resulted from the truncation of the

second- and the higher- order interaction terms: The derived form of vegetation isoline

equation becomes linear. Although the first-order form has attracted researchers in

its applications of various purposes, the accuracy of the isoline equation is known

to be deteriorated when the soil brightness becomes high. This relatively large error

prevented us from further use of the derived expression when the accuracy requirement

of such applications is higher than the error of the derived isoline. Note that the

same order of truncation was applied for both red and NIR wavelength during this

derivation. Since the truncation order is the same for both wavelengths, we considered

this truncation as ‘symmetric’ approximation.

Again, the accuracy loss is due to the truncation of higher-order interaction terms.

This study tried to improve the accuracy of the vegetation isolines by including higher-

order interaction terms, while maintaining its simplicity of the derived expression.

Since the simplicity and accuracy improvement are trade-off, it was a challenging

theme to achieve both high accuracy and simplicity at the same time. This study

overcame this difficulty by analyzing the mechanism of how the errors of vegetation
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isolines was brought by truncation of the higher-order interaction terms. The analyses

implied an important fact that the spectral shift caused by the truncation is not

symmetric. In other words, the accuracy of vegetation isoline may be improved by

truncating the higher-order interaction term ‘asymmetrically’ instead of retaining

the same order of interaction terms for both wavelengths. This study explored this

fundamental insight both analytically and numerically.

This study set the first objective to derive a new vegetation isoline equation which

is higher accuracy than that of the first-order approximation. The accuracy improve-

ment was achieved by including the second-order interaction term only in the NIR

wavelength. By doing so, the accuracy was dramatically improved while retaining its

simplicity in the analytical form. The derived formula becomes quadratic instead of

linear. The errors of the asymmetric-order vegetation isoline equation were reduced

to 20% of the value obtained from the first-order vegetation isoline equation. In

Chapter II, the derivation steps of the asymmetric-order vegetation isoline equation

were explained precisely. Its accuracy improvement was also confirmed by conducting

a series of numerical simulations. In this Chapter, we concluded that the vegetation

isoline equations can be improved by truncating the higher-order interaction terms

asymmetrically.

In Chapter III, the focus of this study was shifted forward to further improve-

ment of the derived asymmetric-order vegetation isoline to meet a standard accuracy

requirement. In general, an accuracy requirement that is posed to satellite data

products is considered based on signal-to-noise ratio (SNR) of designated sensors.

Although the asymmetric-order vegetation isoline shows better accuracy than the

first-order ones, it is still greater than the errors compared to SNR of existing sensors.

In order to achieve these criteria, a single factor was introduced in the asymmetric-

order vegetation isoline. Then, the factor was optimized numerically with the canopy

radiative transfer model over certain ranges of biophysical parameters and soil bright-

ness. As a result, it was confirmed that the error in the asymmetric-order vegetation

isoline is dramatically reduced by optimizing the factor over the parameter ranges.

Specifically, the error obtained from optimized asymmetric-order vegetation isoline

equation was reduced to 4% and 22% of the values obtained from first-order vegeta-

tion isoline and asymmetric-order vegetation isoline, respectively. Compared with the

numerical goal set in chapter III, improved accuracy was confirmed all the condition

and compared with SNR of typical multi spectral sensor, it was found that the ac-

curacy of optimized asymmetric-order vegetation isoline equation exceeds SN ratios.

It was concluded that use of a single factor appropriately can raise the accuracy of

the isoline high enough to meet the general accuracy requirement of satellite data
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products.

All the numerical validations and discussion up to Chapter III have been carried

out only for the specific pair of wavelengths: one from the red (655 nm) and the other

from the NIR (865 nm) wavelength. This limitation was attempted to extended

in Chapter IV. The wavelength range considered in this chapter was from 400 nm

to 1200 nm. This study investigated how the optimized factor (kopt) varies as the

selection of wavelength changes. The results of numerical experiments showed that

the optimized factor changes nicely to minimize the errors induced in the asymmetric-

order vegetation isoline. Furthermore, the results showed that its error is smaller

than the errors before the optimization for the entire wavelength range considered in

this study. It was confirmed that the optimized asymmetric-order vegetation isoline

equation meets the general accuracy requirement of satellite data products for any

wavelength combinations.

This study derived an asymmetric-order vegetation isoline equations and also

showed optimization technique by introducing a single factor. It was also showed

that the introduced technique can also be applicable to the wide wavelength range.

Overall, this study concluded that the derived asymmetric-order vegetation isoline

equation meets accuracy requirements of broad applications and also applicable to

the wide range of wavelength. Use of the derived isoline equation in a context of bio-

physical parameter retrieval remains undone, which needs to be explored in the future

to further confirm its accuracy improvement at the level of satellite data product.
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